Electric Motors and Control Systems
Electric Motors and Control Systems
2nd Edition
ISBN: 9780073373812
Author: Frank D. Petruzella
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 3.2, Problem 6RQ

A step-up transformer has a primary current of 32 A and an applied voltage of 240 V. The secondary coil has a current of 2 A. Assuming ideal transformer conditions, calculate the following:
a. Power input of the primary winding coil
b. Power output of the secondary winding coil
c. Secondary coil winding voltage
d. Turns ratio

Expert Solution
Check Mark
To determine

(a)

The power input of primary winding coil assuming ideal transformer condition.

Answer to Problem 6RQ

The power input of primary winding coil assuming ideal transformer condition is 7680W.

Explanation of Solution

Given information:

The primary winding current is 32A.

The secondary winding current is 2A.

The voltage applied to primary is 240V.

Write the expression for the power input of the primary winding coil assuming ideal transformer condition.

PP=VPIP ...... (I)

Here, the voltage in the primary winding is VP and the current in the primary winding is IP.

Calculation:

Susbtitute 32A for IP and 240V for VP in equation (I).

PP=(240V)(32A)=7680VA( 1W 1VA)=7680W

Conclusion:

Therefore, the power input of primary winding coil assuming ideal transformer condition is 7680W.

Expert Solution
Check Mark
To determine

(b)

The power output of the secondary winding coil assuming ideal transformer condition.

Answer to Problem 6RQ

The power output of secondary winding coil assuming ideal transformer condition is 7680W.

Explanation of Solution

Given information:

The primary winding current is 32A.

The secondary winding current is 2A.

The voltage applied to primary is 240V.

The primary power and secondary power in an ideal transformer are always equal

PP=PS ...... (II)

Here, the primary power is PP and secondary power is PS.

Calculation:

Susbtitute 7680W for PS in equation (II).

PP=7680W

Conclusion:

Therefore, the power output of secondary winding coil assuming ideal transformer condition is 7680W.

Expert Solution
Check Mark
To determine

(c)

The secondary coil winding voltage assuming ideal transformer condition.

Answer to Problem 6RQ

The secondary coil winding voltage assuming ideal transformer condition is 3840V.

Explanation of Solution

Given information:

The primary winding current is 32A.

The secondary winding current is 2A.

The voltage applied to primary is 240V.

Write the expression for the secondary coil winding voltage assuming ideal transformer condition.

VS=PSIS ...... (III)

Here, the current in the secondary coil is IS.

Calculation:

Substitute 7680W for PS and 2A for IS in equation (III)

VS=7680W2A=3840V

Conclusion:

Therefore, the secondary coil winding voltage assuming ideal transformer condition is 3840V.

Expert Solution
Check Mark
To determine

(d)

The turns ratio assuming ideal transformer condition.

Answer to Problem 6RQ

The turns ratio assuming ideal transformer condition is 1:16.

Explanation of Solution

Given information:

The primary winding current is 32A.

The secondary winding current is 2A.

The voltage applied to primary is 240V.

The turns ratio in a transformer is the ratio of the number of turns in the primary winding to number of turns in the secondary winding.

TR=ISIP ....... (IV)

Here, the turns ratio is TR.

Calculation:

Susbtitute 32A for IP and 2A for IS in equation (IV)

TR=2A32ATR=116TR=1:16

Conclusion:

Therefore, the turns ratio assuming ideal transformer condition is 1:16.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Spur gears Note : Exam is open notes &tables / Answer all questions. Q.1. The press shown for Figure.1 has a rated load of 22 kN. The twin screws have double start Acme threads, a diameter of 50 mm, and a pitch of 6 mm. Coefficients of friction are 0.05 for the threads and 0.08 for the collar bearings. Collar diameters are 90 mm. The gears have an efficiency of 95 percent and a speed ratio of 60:1. A slip clutch, on the motor shaft, prevents overloading. The full-load motor speed is 1720 rev/min. (a) When the motor is turned on, how fast will the press head move? (Vm= , Vser. = ) (5M) (b) What should be the horsepower rating of the motor? (TR=, Tc= Pser. = " Bronze bushings Foot Motor Bearings watt, Pm= watt, Pm= h.p.) (20M) 2['s Fig.1 Worm Collar bearing
Problem 2 (55 pts). We now consider the FEM solution of Problem 1.(a) [5pts] Briefly describe the 4 steps necessary to obtain the approximate solution of thatBVP using the Galerkin FEM. Use the minimum amount of math necessary to supportyour explanations.(b) [20pts] Derive the weak form of the BVP.(c) [10pts] Assuming a mesh of two equal elements and linear shape functions, sketch byhand how you expect the FEM solution to look like. Also sketch the analytical solutionfor comparison. In your sketch, identify the nodal degrees of freedom that the FEMsolution seeks to find.(d) [10pts] By analogy with the elastic rod problem and heat conduction problem considered in class, write down the stiffness matrix and force vector for each of the twoelements considered in (c).(e) [10pts] Assemble the global system of equations, and verbally explain how to solve it.
An aluminum rod of length L = 1m has mass density ρ = 2700 kgm3 andYoung’s modulus E = 70GPa. The rod is fixed at both ends. The exactnatural eigenfrequencies of the rod are ωexactn =πnLqEρfor n=1,2,3,. . . .1. What is the minimum number of linear elements necessary todetermine the fundamental frequency ω1 of the system? Discretizethe rod in that many elements of equal length, assemble the globalsystem of equations KU = ω2MU, and find the fundamentalfrequency ω1. Compute the relative error e1 = (ω1 − ωexact1)/ωexact1.Sketch the fundamental mode of vibration.

Chapter 3 Solutions

Electric Motors and Control Systems

Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Electrical Transformers and Rotating Machines
Mechanical Engineering
ISBN:9781305494817
Author:Stephen L. Herman
Publisher:Cengage Learning
Text book image
Understanding Motor Controls
Mechanical Engineering
ISBN:9781337798686
Author:Stephen L. Herman
Publisher:Delmar Cengage Learning
Fluid Mechanics - Viscosity and Shear Strain Rate in 9 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=_0aaRDAdPTY;License: Standard youtube license