![Physics for Scientists and Engineers, Vol. 1](https://www.bartleby.com/isbn_cover_images/9781429201322/9781429201322_largeCoverImage.gif)
Concept explainers
(a)
The ray diagram for the two locations.
(a)
![Check Mark](/static/check-mark.png)
Explanation of Solution
Introduction:
The ray diagram is related to show the focal length
Draw a ray diagram to show the position of object, image and screen.
Conclusion:
Thus, the ray diagram is given above.
(b)
The focal length of the lens using Bessel’s equation.
(b)
![Check Mark](/static/check-mark.png)
Explanation of Solution
Given:
The object to image distance is
The distance between the two position of the lens is
Formula used:
Write the expression for focal length using Bessel’s method.
Here,
Calculation:
Substitute
Conclusion:
Thus, the focal length of the lens is
(c)
The two locations of the lens with respect to the object
(c)
![Check Mark](/static/check-mark.png)
Explanation of Solution
Given:
The object to image distance is
The distance between the two position of the lens is
Formula used:
Write the expression for the first lens equation.
Here,
Write the expression for the second lens equation.
Here,
Write the expression for the distance between object and screen for first lens.
Here,
Write the expression for the distance between object and screen for first lens.
Write the distance between the two lenses in terms of first image.
Here,
Write the distance between the two lenses in terms of second image.
Calculation:
Subtract equation (3) from equation (2).
Substitute
Rearrange the above equation.
Substitute
Add equation (3) to equation (2).
Substitute
Rearrange the above equation.
Substitute
Conclusion:
Thus, the two locations of the lens with respect to object are
(d)
The magnification of the images for two different positions of the lens.
(d)
![Check Mark](/static/check-mark.png)
Explanation of Solution
Given:
The object to image distance is
The distance between the two position of the lens is
The distance of the first object is
The distance of the second object is
Formula used:
Write the expression for the distance between object and screen for first lens.
Here,
Rearrange the above equation.
Write the expression for the distance between object and screen for first lens.
Rearrange the above equation.
Write the expression for the lateral magnification of the first image.
Here,
Write the expression for the lateral magnification of the second image.
Here,
Calculation:
Substitute
Substitute
Substitute
Substitute
Conclusion:
Thus, the magnification of the two images for two lens positions are
Want to see more full solutions like this?
Chapter 32 Solutions
Physics for Scientists and Engineers, Vol. 1
- A person is running a temperature of 41.0°C. What is the equivalent temperature on the Fahrenheit scale? (Enter your answer to at least three significant figures.) °Farrow_forwardWhat is the period of a rock of mass 2.0kg tied to the end of a spring 0.625m long string that hangs in a doorway and has an elastic constant of 40N/m?arrow_forwardGive an example of friction speeding up an object.arrow_forward
- Which is the higher temperature? (Assume temperatures to be exact numbers.) (a) 272°C or 272°F? 272°C 272°F They are the same temperature. (b) 200°C or 368°F? 200°C 368°F They are the same temperature.arrow_forwardWhat is the direction of a force vector given by ~v = −6Nˆi − 8Nˆj?arrow_forwardWhat can be said of the position vector of an object far from any influences on its motion?arrow_forward
- ་ Consider a ball sliding down a ramp as shown above. The ball is already in motion at the position 1. Which direction best approximates the direction of acceleration vector a when the object is at position 2?arrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168000/9781938168000_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168185/9781938168185_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285737027/9781285737027_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_smallCoverImage.gif)