Physics for Scientists and Engineers, Vol. 1
Physics for Scientists and Engineers, Vol. 1
6th Edition
ISBN: 9781429201322
Author: Paul A. Tipler, Gene Mosca
Publisher: Macmillan Higher Education
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 32, Problem 27P

(a)

To determine

The image distances for given object distances.

(a)

Expert Solution
Check Mark

Explanation of Solution

Given:

The object distances are, 55cm , 24cm , 12cm , 8.0cm and 1.0cm .

The radius of curvature is 24cm .

Formula used:

Write expression for mirror equation.

  1v+1u=1f

Here, v is image distance, u is object distance and f is focal length.

Substitute r2 for f in above expression.

  1v+1u=2r

Solve above expression for v .

  v=ru2ur  ....... (1)

Calculation:

Substitute v1 for v , 24cm for r and 55cm for u in equation (1).

  v1=(55cm)(24cm)2(55cm)(24cm)v1=9.85cm

Substitute v2 for v , 24cm for r and 24cm for u in equation (1).

  v2=(24cm)(24cm)2(24cm)(24cm)v2=8cm

Substitute v3 for v , 24cm for r and 12cm for u in equation (1).

  v3=(24cm)(12cm)2(12cm)(24cm)v3=6cm

Substitute v4 for v , 24cm for r and 8cm for u in equation (1).

  v4=(24cm)(8cm)2(8cm)(24cm)v4=4.8cm

Substitute v5 for v , 24cm for r and 1.0cm for u in equation (1).

  v5=(24cm)(1cm)2(1cm)(24cm)v5=0.92cm

Conclusion:

Thus, the image distance is 9.85cm for 55cm ,the image formation for object at 24cm is 8cm , the image formation for object at 12cm is 6cm , the image formation for object at 8cm is 4.8cm and the image formation for object at 1.0cm is at 0.92cm .

(b)

To determine

The magnification of each given object distance.

(b)

Expert Solution
Check Mark

Explanation of Solution

Given:

The object distances are, 55cm , 24cm , 12cm , 8.0cm and 1.0cm .

The radius of curvature is 24cm .

Formula used:

Write expression for magnification for mirror.

  m=vu  ....... (1)

Calculation:

Substitute m1 for m , 55cm for u and 9.85cm for v in equation (1).

  m1= (9.85cm)55m1=0.18

Substitute m2 for m , 24cm for u and 8cm for v in equation (1).

  m2=(8cm)24cmm2=0.33

Substitute m3 for m , 12cm for u and 6cm for v in equation (1).

  m3=(6cm)12m3=0.5

Substitute m4 for m , 8.0cm for u and 4.8cm for v in equation (1).

  m4=(4.8cm)8.0m4=0.60

Substitute m5 for m , 1.0cm for u and 0.92cm for v in equation (1).

  m5=(0.92)1.0m5=0.92

Conclusion:

Thus, the magnification for first case is 0.18 , for second case is 0.33 , for third case is 0.50 , for fourth case is 0.60 and for fifth case is 0.92 .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A planar double pendulum consists of two point masses \[m_1 = 1.00~\mathrm{kg}, \qquad m_2 = 1.00~\mathrm{kg}\]connected by massless, rigid rods of lengths \[L_1 = 1.00~\mathrm{m}, \qquad L_2 = 1.20~\mathrm{m}.\]The upper rod is hinged to a fixed pivot; gravity acts vertically downward with\[g = 9.81~\mathrm{m\,s^{-2}}.\]Define the generalized coordinates \(\theta_1,\theta_2\) as the angles each rod makes with thedownward vertical (positive anticlockwise, measured in radians unless stated otherwise).At \(t=0\) the system is released from rest with \[\theta_1(0)=120^{\circ}, \qquad\theta_2(0)=-10^{\circ}, \qquad\dot{\theta}_1(0)=\dot{\theta}_2(0)=0 .\]Using the exact nonlinear equations of motion (no small-angle or planar-pendulumapproximations) and assuming the rods never stretch or slip, determine the angle\(\theta_2\) at the instant\[t = 10.0~\mathrm{s}.\]Give the result in degrees, in the interval \((-180^{\circ},180^{\circ}]\).
What are the expected readings of the ammeter and voltmeter for the circuit in the figure below? (R = 5.60 Ω, ΔV = 6.30 V) ammeter     I =
simple diagram to illustrate the setup for each law- coulombs law and biot savart law

Chapter 32 Solutions

Physics for Scientists and Engineers, Vol. 1

Ch. 32 - Prob. 11PCh. 32 - Prob. 12PCh. 32 - Prob. 13PCh. 32 - Prob. 14PCh. 32 - Prob. 15PCh. 32 - Prob. 16PCh. 32 - Prob. 17PCh. 32 - Prob. 18PCh. 32 - Prob. 19PCh. 32 - Prob. 20PCh. 32 - Prob. 21PCh. 32 - Prob. 22PCh. 32 - Prob. 23PCh. 32 - Prob. 24PCh. 32 - Prob. 25PCh. 32 - Prob. 26PCh. 32 - Prob. 27PCh. 32 - Prob. 28PCh. 32 - Prob. 29PCh. 32 - Prob. 30PCh. 32 - Prob. 31PCh. 32 - Prob. 32PCh. 32 - Prob. 33PCh. 32 - Prob. 34PCh. 32 - Prob. 35PCh. 32 - Prob. 36PCh. 32 - Prob. 37PCh. 32 - Prob. 38PCh. 32 - Prob. 39PCh. 32 - Prob. 40PCh. 32 - Prob. 41PCh. 32 - Prob. 42PCh. 32 - Prob. 43PCh. 32 - Prob. 44PCh. 32 - Prob. 45PCh. 32 - Prob. 46PCh. 32 - Prob. 47PCh. 32 - Prob. 48PCh. 32 - Prob. 49PCh. 32 - Prob. 50PCh. 32 - Prob. 51PCh. 32 - Prob. 54PCh. 32 - Prob. 55PCh. 32 - Prob. 56PCh. 32 - Prob. 57PCh. 32 - Prob. 58PCh. 32 - Prob. 59PCh. 32 - Prob. 60PCh. 32 - Prob. 61PCh. 32 - Prob. 62PCh. 32 - Prob. 63PCh. 32 - Prob. 64PCh. 32 - Prob. 65PCh. 32 - Prob. 66PCh. 32 - Prob. 67PCh. 32 - Prob. 68PCh. 32 - Prob. 69PCh. 32 - Prob. 70PCh. 32 - Prob. 71PCh. 32 - Prob. 72PCh. 32 - Prob. 73PCh. 32 - Prob. 74PCh. 32 - Prob. 75PCh. 32 - Prob. 76PCh. 32 - Prob. 77PCh. 32 - Prob. 78PCh. 32 - Prob. 79PCh. 32 - Prob. 80PCh. 32 - Prob. 81PCh. 32 - Prob. 82PCh. 32 - Prob. 83PCh. 32 - Prob. 84PCh. 32 - Prob. 85PCh. 32 - Prob. 86PCh. 32 - Prob. 87PCh. 32 - Prob. 88PCh. 32 - Prob. 89PCh. 32 - Prob. 90PCh. 32 - Prob. 91PCh. 32 - Prob. 92PCh. 32 - Prob. 93PCh. 32 - Prob. 94PCh. 32 - Prob. 95PCh. 32 - Prob. 96PCh. 32 - Prob. 97PCh. 32 - Prob. 98PCh. 32 - Prob. 99PCh. 32 - Prob. 100PCh. 32 - Prob. 101PCh. 32 - Prob. 102PCh. 32 - Prob. 103PCh. 32 - Prob. 104PCh. 32 - Prob. 105PCh. 32 - Prob. 106PCh. 32 - Prob. 107P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY