Physics for Scientists and Engineers, Vol. 1
Physics for Scientists and Engineers, Vol. 1
6th Edition
ISBN: 9781429201322
Author: Paul A. Tipler, Gene Mosca
Publisher: Macmillan Higher Education
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 32, Problem 45P

(a)

To determine

The position and size of the image.

(a)

Expert Solution
Check Mark

Explanation of Solution

Given:

The height of the object is 3.00cm .

The distance of the object in front of a thin lens is 25.0cm .

The power of the lens is 10.0D

Formula used:

Draw a ray diagram to show the position and size of the image.

  Physics for Scientists and Engineers, Vol. 1, Chapter 32, Problem 45P , additional homework tip  1

Write the expression for thin lens equation.

  1u+1v=1f   ....... (1)

Here, u is the object distance, v is the image distance and f is the focal length of the lens.

Write the expression for the focal length in terms of power of a lens.

  f=1P   ....... (2)

Here, P is the power of the lens.

Write the expression for lateral magnification in terms of image height and object height.

  m=yy

Here, m is the lateral magnification, y is the image height and y is the object height.

Write the expression for lateral magnification in terms of image distance and object distance.

  m=vu   ....... (3)

Combine the above two equations.

  yy=vuy=vuy   ....... (4)

Calculation:

Substitute 10.0D for P in equation (2).

  f=110.0Df=0.100m( 100cm 1m)f=10.0cm

Rewrite equation (1) to calculate the image distance.

  v=fuuf

Substitute 10.0cm for f and 25.0cm for u in the above equation.

  v=( 10.0cm)( 25.0cm)25.0cm10.0cmv16.67cm

Substitute 16.7cm for v and 25.0cm for u in equation (3).

  m=16.7cm25.0cmm0.67

Substitute 16.7cm for v , 3.00cm for y and 25.0cm for u in equation (4).

  I=16.7cm25.0cm(3.00cm)I2.00cm

Conclusion:

Thus, the image is real and inverted. As the image distance, v>0 so the image is real and the lateral magnification, m<0 so the image is inverted and diminished.

(b)

To determine

The position and size of the image.

(b)

Expert Solution
Check Mark

Explanation of Solution

Given:

The height of the object is 3.00cm .

The distance of the object in front of a thin lens is 20.0cm .

The power of the lens is 10.0D

Formula used:

Draw a ray diagram to show the position and size of the image.

  Physics for Scientists and Engineers, Vol. 1, Chapter 32, Problem 45P , additional homework tip  2

Write the expression for thin lens equation.

  1u+1v=1f

Write the expression for the focal length in terms of power of a lens.

  f=1P

Write the expression for lateral magnification in terms of image height and object height.

  m=yy

Write the expression for lateral magnification in terms of image distance and object distance.

  m=vu

Combine the above two equations.

  yy=vuy=vuy

Calculation:

Substitute 10.0D for P in equation (2).

  f=110.0Df=0.100m( 100cm 1m)f=10.0cm

Rewrite equation (1) to calculate the image distance.

  v=fuuf

Substitute 10.0cm for f and 20.0cm for u in the above equation.

  v=( 10.0cm)( 20.0cm)20.0cm10.0cmv=20.0cm

Substitute 20.0cm for v and 20.0cm for u in equation (3).

  m=20.0cm20.0cmm1.00

Substitute 20.0cm for v , 3.00cm for y and 20.0cm for u in equation (4).

  y=20.0cm20.0cm(3.00cm)y3.00cm

Conclusion:

Thus, the image is real and inverted. As the image distance, v>0 so the image is real and the lateral magnification, m<0 so the image is inverted and same size.

(c)

To determine

The position and size of the image.

(c)

Expert Solution
Check Mark

Explanation of Solution

Given:

The height of the object is 3.00cm .

The distance of the object in front of a thin lens is 20.0cm .

The power of the lens is 10.0D

Formula used:

Draw a ray diagram to show the position and size of the image.

  Physics for Scientists and Engineers, Vol. 1, Chapter 32, Problem 45P , additional homework tip  3

Write the expression for thin lens equation.

  1u+1v=1f

Write the expression for the focal length in terms of power of a lens.

  f=1P

Write the expression for lateral magnification in terms of image height and object height.

  m=yy

Write the expression for lateral magnification in terms of image distance and object distance.

  m=vu

Combine the above two equations.

  yy=vuy=vuy

Calculation:

Substitute (10.0D) for P in equation (2).

  f=110.0Df=0.100m( 100cm 1m)f=10.0cm

Rewrite equation (1) to calculate the image distance.

  v=fuuf

Substitute (10.0cm) for f and 20.0cm for u in the above equation.

  v=( 10.0cm)( 20.0cm)20.0cm( 10.0cm)v6.67cm

Substitute (6.67cm) for v and 20.0cm for u in equation (3).

  m=6.67cm20.0cmm0.33

Substitute (6.67cm) for v , 3.00cm for y and 20.0cm for u in equation (4).

  y=( 6.67cm)20.0cm(3.00cm)y1.00cm

Conclusion:

Thus, the image is virtual and inverted. As the image distance, v<0 so the image is virtual and one third of the size of object.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
ՍՈՈՒ XVirginia Western Community Coll x P Course Home X + astering.pearson.com/?courseld=13289599#/ Figure y (mm) x=0x = 0.0900 m All ✓ Correct For either the time for one full cycle is 0.040 s; this is the period. Part C - ON You are told that the two points x = 0 and x = 0.0900 m are within one wavelength of each other. If the wave is moving in the +x-direction, determine the wavelength. Express your answer to two significant figures and include the appropriate units. 0 t(s) λ = Value m 0.01 0.03 0.05 0.07 Copyright © 2025 Pearson Education Inc. All rights reserved. 日 F3 F4 F5 1775 % F6 F7 B F8 Submit Previous Answers Request Answer ? × Incorrect; Try Again; 3 attempts remaining | Terms of Use | Privacy Policy | Permissions | Contact Us | Cookie Settings 28°F Clear 4 9:23 PM 1/20/2025 F9 prt sc F10 home F11 end F12 insert delete 6 7 29 & * ( 8 9 0 t = back Ο
Part C Find the height yi from which the rock was launched. Express your answer in meters to three significant figures.                                     Learning Goal: To practice Problem-Solving Strategy 4.1 for projectile motion problems. A rock thrown with speed 12.0 m/s and launch angle 30.0 ∘ (above the horizontal) travels a horizontal distance of d = 19.0 m before hitting the ground. From what height was the rock thrown? Use the value g = 9.800 m/s2 for the free-fall acceleration.     PROBLEM-SOLVING STRATEGY 4.1 Projectile motion problems MODEL: Is it reasonable to ignore air resistance? If so, use the projectile motion model. VISUALIZE: Establish a coordinate system with the x-axis horizontal and the y-axis vertical. Define symbols and identify what the problem is trying to find. For a launch at angle θ, the initial velocity components are vix=v0cosθ and viy=v0sinθ. SOLVE: The acceleration is known: ax=0 and ay=−g. Thus, the problem becomes one of…
Phys 25

Chapter 32 Solutions

Physics for Scientists and Engineers, Vol. 1

Ch. 32 - Prob. 11PCh. 32 - Prob. 12PCh. 32 - Prob. 13PCh. 32 - Prob. 14PCh. 32 - Prob. 15PCh. 32 - Prob. 16PCh. 32 - Prob. 17PCh. 32 - Prob. 18PCh. 32 - Prob. 19PCh. 32 - Prob. 20PCh. 32 - Prob. 21PCh. 32 - Prob. 22PCh. 32 - Prob. 23PCh. 32 - Prob. 24PCh. 32 - Prob. 25PCh. 32 - Prob. 26PCh. 32 - Prob. 27PCh. 32 - Prob. 28PCh. 32 - Prob. 29PCh. 32 - Prob. 30PCh. 32 - Prob. 31PCh. 32 - Prob. 32PCh. 32 - Prob. 33PCh. 32 - Prob. 34PCh. 32 - Prob. 35PCh. 32 - Prob. 36PCh. 32 - Prob. 37PCh. 32 - Prob. 38PCh. 32 - Prob. 39PCh. 32 - Prob. 40PCh. 32 - Prob. 41PCh. 32 - Prob. 42PCh. 32 - Prob. 43PCh. 32 - Prob. 44PCh. 32 - Prob. 45PCh. 32 - Prob. 46PCh. 32 - Prob. 47PCh. 32 - Prob. 48PCh. 32 - Prob. 49PCh. 32 - Prob. 50PCh. 32 - Prob. 51PCh. 32 - Prob. 54PCh. 32 - Prob. 55PCh. 32 - Prob. 56PCh. 32 - Prob. 57PCh. 32 - Prob. 58PCh. 32 - Prob. 59PCh. 32 - Prob. 60PCh. 32 - Prob. 61PCh. 32 - Prob. 62PCh. 32 - Prob. 63PCh. 32 - Prob. 64PCh. 32 - Prob. 65PCh. 32 - Prob. 66PCh. 32 - Prob. 67PCh. 32 - Prob. 68PCh. 32 - Prob. 69PCh. 32 - Prob. 70PCh. 32 - Prob. 71PCh. 32 - Prob. 72PCh. 32 - Prob. 73PCh. 32 - Prob. 74PCh. 32 - Prob. 75PCh. 32 - Prob. 76PCh. 32 - Prob. 77PCh. 32 - Prob. 78PCh. 32 - Prob. 79PCh. 32 - Prob. 80PCh. 32 - Prob. 81PCh. 32 - Prob. 82PCh. 32 - Prob. 83PCh. 32 - Prob. 84PCh. 32 - Prob. 85PCh. 32 - Prob. 86PCh. 32 - Prob. 87PCh. 32 - Prob. 88PCh. 32 - Prob. 89PCh. 32 - Prob. 90PCh. 32 - Prob. 91PCh. 32 - Prob. 92PCh. 32 - Prob. 93PCh. 32 - Prob. 94PCh. 32 - Prob. 95PCh. 32 - Prob. 96PCh. 32 - Prob. 97PCh. 32 - Prob. 98PCh. 32 - Prob. 99PCh. 32 - Prob. 100PCh. 32 - Prob. 101PCh. 32 - Prob. 102PCh. 32 - Prob. 103PCh. 32 - Prob. 104PCh. 32 - Prob. 105PCh. 32 - Prob. 106PCh. 32 - Prob. 107P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY