In Exercises 41-64, a. Use the Leading Coefficient Test to determine the graph’s end behavior. b. Find the x-intercepts. State whether the graph crosses the x-axis, or touches the x-axis and turns around, at each intercept. c. Find the y-intercept. d. Determine whether the graph has y-axis symmetry, origin symmetry, or neither. e. If necessary, find a few additional points and graph the function. Use the maximum number of turning points to check whether it is drawn correctly. f ( x ) = x 4 − 9 x 2
In Exercises 41-64, a. Use the Leading Coefficient Test to determine the graph’s end behavior. b. Find the x-intercepts. State whether the graph crosses the x-axis, or touches the x-axis and turns around, at each intercept. c. Find the y-intercept. d. Determine whether the graph has y-axis symmetry, origin symmetry, or neither. e. If necessary, find a few additional points and graph the function. Use the maximum number of turning points to check whether it is drawn correctly. f ( x ) = x 4 − 9 x 2
Solution Summary: The following table illustrates how the graph of a polynomial function, f(x)=x
Match the equation, graph, and description of transformation.
Horizontal translation 1
unit right; vertical
translation 1 unit up;
vertical shrink of 1/2;
reflection across the x
axis
Horizontal translation 1
unit left; vertical
translation 1 unit
down; vertical stretch
of 2
Horizontal translation
2 units right; reflection
across the x-axis
Vertical translation 1
unit up; vertical stretch
of 2; reflection across
the x-axis
Reflection across the x
- axis; vertical
translation 2 units
down
Horizontal translation
2 units left
Horizontal translation
2 units right
Vertical translation 1
unit down; vertical
shrink of 1/2; reflection
across the x-axis
Vertical translation 2
units down
Horizontal translation 1
unit left; vertical
translation 2 units up;
vertical stretch of 2;
reflection across the x
- axis
f(x) = -
=-½ ½ (x − 1)²+1
f(x) = x²-2
f(x) = -2(x+1)²+2
f(x)=2(x+1)²-1
f(x)=-(x-2)²
f(x)=(x-2)²
f(x) =
f(x) = -2x²+1
f(x) = -x²-2
f(x) = (x+2)²
What is the vertex, increasing interval, decreasing interval, domain, range, root/solution/zero, and the end behavior?
The augmented matrix of a linear system has been reduced by row operations to the
form shown. Continue the appropriate row operations and describe the solution set of the
original system.
1 -1
0 1 -2
00-4
0-6
0
0
1
- 3
3
0
001
4
Chapter 3 Solutions
MyLab Math with Pearson eText -- Standalone Access Card -- for Algebra and Trigonometry (6th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.
Interpreting Graphs of Quadratic Equations (GMAT/GRE/CAT/Bank PO/SSC CGL) | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=BHgewRcuoRM;License: Standard YouTube License, CC-BY
Solve a Trig Equation in Quadratic Form Using the Quadratic Formula (Cosine, 4 Solutions); Author: Mathispower4u;https://www.youtube.com/watch?v=N6jw_i74AVQ;License: Standard YouTube License, CC-BY