In Prob. 3.55, determine the perpendicular distance between a line joining points O and D and the line of action of P.
The perpendicular distance between a line joining points
Answer to Problem 3.64P
The perpendicular distance between a line joining points
Explanation of Solution
Refer the Problem 3.55
Write the expression for force
The magnitude of the line joining points
The unit vector at line joining points
Here, the unit vector at line joining points
Substitute
Write the equation of the moment of
Here, the moment of force is
Conclusion:
Substitute
Write the expression for force
The magnitude of the line joining points
The unit vector at line joining points
Here, the unit vector at line joining points
Substitute
Write the equation of the moment of
Here, the perpendicular component contribute to the moment of force about the line
Substitute
The relation between perpendicular and parallel component contribute to the moment of force is,
Here, the parallel component of moment is
Rewrite the equation (III) to get
Substitute
Write the equation for the moment about a line joining points
Here, the moment about a line joining points
Rewrite the relation in terms of
Refer the problem 77268-3.2-3.55P
The value of the moment line joining points
Substitute
Therefore, the perpendicular distance between a line joining points
Want to see more full solutions like this?
Chapter 3 Solutions
<LCPO> VECTOR MECH,STAT+DYNAMICS
- Given answers to be: i) 14.65 kN; 6.16 kN; 8.46 kN ii) 8.63 kN; 9.88 kN iii) Bearing 6315 for B1 & B2, or Bearing 6215 for B1arrow_forward(b) A steel 'hot rolled structural hollow section' column of length 5.75 m, has the cross-section shown in Figure Q.5(b) and supports a load of 750 kN. During service, it is subjected to axial compression loading where one end of the column is effectively restrained in position and direction (fixed) and the other is effectively held in position but not in direction (pinned). i) Given that the steel has a design strength of 275 MN/m², determine the load factor for the structural member based upon the BS5950 design approach using Datasheet Q.5(b). [11] ii) Determine the axial load that can be supported by the column using the Rankine-Gordon formula, given that the yield strength of the material is 280 MN/m² and the constant *a* is 1/30000. [6] 300 600 2-300 mm wide x 5 mm thick plates. Figure Q.5(b) L=5.75m Pinned Fixedarrow_forwardHelp ارجو مساعدتي في حل هذا السؤالarrow_forward
- Q10) Body A weighs 600 lb contact with smooth surfaces at D and E. Determine the tension in the cord and the forces acting on C on member BD, also calculate the reaction at B and F. Cable 6' 3' wwwarrow_forwardHelp ارجو مساعدتي في حل هذا السؤالarrow_forwardQ3: Find the resultant of the force system.arrow_forward
- Question 1 A three-blade propeller of a diameter of 2 m has an activity factor AF of 200 and its ratio of static thrust coefficient to static torque coefficient is 10. The propeller's integrated lift coefficient is 0.3.arrow_forward(L=6847 mm, q = 5331 N/mm, M = 1408549 N.mm, and El = 8.6 x 1014 N. mm²) X A ΕΙ B L Y Marrow_forwardCalculate the maximum shear stress Tmax at the selected element within the wall (Fig. Q3) if T = 26.7 KN.m, P = 23.6 MPa, t = 2.2 mm, R = 2 m. The following choices are provided in units of MPa and rounded to three decimal places. Select one: ○ 1.2681.818 O 2. 25745.455 O 3. 17163.636 O 4. 10727.273 ○ 5.5363.636arrow_forward
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L