PHYSICS 1250 PACKAGE >CI<
9th Edition
ISBN: 9781305000988
Author: SERWAY
Publisher: CENGAGE LEARNING (CUSTOM)
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 32, Problem 32.7OQ
To determine
The emf in the inductor.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Initially, an inductor with no resistance carries a constant current. Then the current is brought to a new constant value twice
as large. After this change, when the current is constant at its higher value, what has happened to the emf in the inductor?
Rank the following inductors in order of the potential difference Vab , from most positive to most negative. In each case the inductor has zero resistance and the current flows from point a through the inductor to point b. (i) The current through a 2.0 mH inductor increases from 1.0 A to 2.0 A in 0.50 s; (ii) the current through a 4.0 mH inductor decreases from 3.0 A to 0 in 2.0 s; (iii) the current through a 1.0 mH inductor remains constant at 4.0 A; (iv) the current through a 1.0 mH inductor increases from 0 to 4.0 A in 0.25 s.
8. A constant voltage of 5.00 V has been observed over a certain time interval across a 2.20 H inductor. The current through the inductor, measured as 2.00 A at the beginning of the time interval, was observed to increase at a constant rate to a value of 8.00 A at the end of the time interval. How long was this time interval?
This is not and will not be graded
Chapter 32 Solutions
PHYSICS 1250 PACKAGE >CI<
Ch. 32 - A coil with zero resistance has its ends labeled a...Ch. 32 - Prob. 32.2QQCh. 32 - Prob. 32.3QQCh. 32 - Prob. 32.4QQCh. 32 - (i) At an instant of time during the oscillations...Ch. 32 - Prob. 32.1OQCh. 32 - Prob. 32.2OQCh. 32 - Prob. 32.3OQCh. 32 - In Figure OQ32.4, the switch is left in position a...Ch. 32 - Prob. 32.5OQ
Ch. 32 - Prob. 32.6OQCh. 32 - Prob. 32.7OQCh. 32 - Prob. 32.1CQCh. 32 - Prob. 32.2CQCh. 32 - A switch controls the current in a circuit that...Ch. 32 - Prob. 32.4CQCh. 32 - Prob. 32.5CQCh. 32 - Prob. 32.6CQCh. 32 - The open switch in Figure CQ32.7 is thrown closed...Ch. 32 - After the switch is dosed in the LC circuit shown...Ch. 32 - Prob. 32.9CQCh. 32 - Discuss the similarities between the energy stored...Ch. 32 - Prob. 32.1PCh. 32 - Prob. 32.2PCh. 32 - Prob. 32.3PCh. 32 - Prob. 32.4PCh. 32 - An emf of 24.0 mV Ls induced in a 500-turn coil...Ch. 32 - Prob. 32.6PCh. 32 - Prob. 32.7PCh. 32 - Prob. 32.8PCh. 32 - Prob. 32.9PCh. 32 - Prob. 32.10PCh. 32 - Prob. 32.11PCh. 32 - A toroid has a major radius R and a minor radius r...Ch. 32 - Prob. 32.13PCh. 32 - Prob. 32.14PCh. 32 - Prob. 32.15PCh. 32 - Prob. 32.16PCh. 32 - Prob. 32.17PCh. 32 - Prob. 32.18PCh. 32 - Prob. 32.19PCh. 32 - When the switch in Figure P32.18 is closed, the...Ch. 32 - Prob. 32.21PCh. 32 - Show that i = Iiet/ is a solution of the...Ch. 32 - Prob. 32.23PCh. 32 - Consider the circuit in Figure P32.18, taking =...Ch. 32 - Prob. 32.25PCh. 32 - The switch in Figure P31.15 is open for t 0 and...Ch. 32 - Prob. 32.27PCh. 32 - Prob. 32.28PCh. 32 - Prob. 32.29PCh. 32 - Two ideal inductors, L1 and L2, have zero internal...Ch. 32 - Prob. 32.31PCh. 32 - Prob. 32.32PCh. 32 - Prob. 32.33PCh. 32 - Prob. 32.34PCh. 32 - Prob. 32.35PCh. 32 - Complete the calculation in Example 31.3 by...Ch. 32 - Prob. 32.37PCh. 32 - A flat coil of wire has an inductance of 40.0 mH...Ch. 32 - Prob. 32.39PCh. 32 - Prob. 32.40PCh. 32 - Prob. 32.41PCh. 32 - Prob. 32.42PCh. 32 - Prob. 32.43PCh. 32 - Prob. 32.44PCh. 32 - Prob. 32.45PCh. 32 - Prob. 32.46PCh. 32 - In the circuit of Figure P31.29, the battery emf...Ch. 32 - A 1.05-H inductor is connected in series with a...Ch. 32 - A 1.00-F capacitor is charged by a 40.0-V power...Ch. 32 - Calculate the inductance of an LC circuit that...Ch. 32 - An LC circuit consists of a 20.0-mH inductor and a...Ch. 32 - Prob. 32.52PCh. 32 - Prob. 32.53PCh. 32 - Prob. 32.54PCh. 32 - An LC circuit like the one in Figure CQ32.8...Ch. 32 - Show that Equation 32.28 in the text Ls Kirchhoffs...Ch. 32 - In Figure 31.15, let R = 7.60 , L = 2.20 mH, and C...Ch. 32 - Consider an LC circuit in which L = 500 mH and C=...Ch. 32 - Electrical oscillations are initiated in a series...Ch. 32 - Review. Consider a capacitor with vacuum between...Ch. 32 - Prob. 32.61APCh. 32 - An inductor having inductance I. and a capacitor...Ch. 32 - A capacitor in a series LC circuit has an initial...Ch. 32 - Prob. 32.64APCh. 32 - When the current in the portion of the circuit...Ch. 32 - At the moment t = 0, a 24.0-V battery is connected...Ch. 32 - Prob. 32.67APCh. 32 - Prob. 32.68APCh. 32 - Prob. 32.69APCh. 32 - At t = 0, the open switch in Figure P31.46 is...Ch. 32 - Prob. 32.71APCh. 32 - Prob. 32.72APCh. 32 - Review. A novel method of storing energy has been...Ch. 32 - Prob. 32.74APCh. 32 - Review. The use of superconductors has been...Ch. 32 - Review. A fundamental property of a type 1...Ch. 32 - Prob. 32.77APCh. 32 - In earlier times when many households received...Ch. 32 - Assume the magnitude of the magnetic field outside...Ch. 32 - Prob. 32.80CPCh. 32 - To prevent damage from arcing in an electric...Ch. 32 - One application of an RL circuit is the generation...Ch. 32 - Prob. 32.83CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In Figure 14.12, =12V , L = 20 mH, and R=5.0. Determine (a) the time constant of the circuit, (b) the initial current through the resistor, (C) the final current through the resistor, (d) the current through the resistor when t=2L , and (e) the voltages across the inductor and the resistor when t=2L .arrow_forwardWhen a camera uses a flash, a fully charged capacitor discharges through an inductor. In what time must the 0.100-A current through a 2.00-mH inductor be switched on or off to induce a 500-V emf?arrow_forwardThe current I(t) through a 5.0-mH inductor varies with time, as shown below. The resistance of the inductor is 5.0 . Calculate the voltage across the inductor at t = 2.0 ms, r = 4.0 ms, and t = 8.0 ms.arrow_forward
- Show that Equation 32.28 in the text Ls Kirchhoffs loop rule as applied to the circuit in Figure P32.56 with the switch thrown to position b.arrow_forwardcharge and the current (i) is zero, then P= 0. If q =0 at time t =0, then =±n/2. Example: A 300-V dc power supply is used to charge a 25-µF capacitor. After the capacitor is fully charged, it is disconnected from the power supply and connected across a 10-mH inductor. The resistance in the circuit is negligible. (a) Find the frequency and period of oscillation of the circuit. (b) Find the capacitor charge and the circuit current 1.2 ms after the inductor and capacitor are connected. Then find for the magnetic and electric energies (c) at and (d) at t = 1.2 ms. Given: C = 25 x 106 F L = 10 x 103 H t = 1.2 x 103 s (c) Solving for magnetic (UB) and electric (UE) energies at time t =0. Solution: (7.5 x 10-3 C)? (a) Solving for angular frequency (w)and period (T) Ug =Li? = 0 Ug = 2C - 1.1 J 2(25 x 10-6 F) 1 = 2.03 x 10° rad/s (10 x 10-3H)(25 x 10¬°F) (d) Solving for magnetic (UB) and electric (UE) energies at time t =1.2 ms. 2. 03 х 103 Рad Ug = }Li² = }(10 × 10-3 H)(-10 A)² = 0.5 J f = 320…arrow_forwardA 140-mH inductor and a 5.50-0 resistor are connected with a switch to a 6.00-V battery as shown in the figure below. (a) After the switch is first thrown to a (connecting the battery), what time interval elapses before the current reaches 220 mA? ms (b) What is the current in the inductor 10.0 s after the switch is closed? A (c) Now the switch is quickly thrown from a to b. What time interval elapses before the current in the inductor falls to 160 mA? msarrow_forward
- A battery providing emf V is connected in series to a resistor R and an inductor L, and left until the current reaches a constant value. (a) What is the energy stored in the inductor in terms of V, R and L? Then, at t = 0, the battery is suddenly removed, so that only the inductor and resistor are left connected to each other in a closed circuit. (b) Derive an expression for the energy stored in the inductor in the new circuit without the battery. Sketch your expression as a function of time. (c) How long does it take for the energy stored in the inductor to decay to 1/9 of the initial value that you found in part (a)?arrow_forwardA 5.0 mH inductor and a 10.0 N resistor are connected in series with a 6.0 V ideal battery and a switch. (a) Immediately after the switch is closed what is the voltage across and current in the resistor? (b) Immediately after the switch is closed what is the voltage across and current in the inductor? (c) How long will it take to reach 75.0% of the maximum current in the inductor? (d) After a long time what is the voltage across and the current in the resistor? (e) After a long time what is the voltage across and the current in the inductor? (f) Include aarrow_forwardAn inductor L = 0.025 H and a 40 Ω resistor are connected in series to a 5 volt battery and a switch. At t = 0, the switch is closed to complete the circuit. a) What is the potential difference across the resistor a long time after the switch is closed? b) From the time the switch is closed, how long does it take for the current to reach 63% of the maximum value? c) For a single loop circuit with a 2 Ω resistor, a single battery of 3 V, and a characteristic size (size of the loop) of 15.0 cm, the estimated inductance is 2 ✕ 10−7 H. What is the time constant of this RL circuit?arrow_forward
- A 12.0 V battery is connected into a series circuit containing a 12.0 2 resistor and a 2.50 H inductor. (a) In what time interval (in s) will the current reach 50.0% of its final value? S (b) In what time interval (in s) will the current reach 90.0% of its final value? S What If? After a very long time, using a switch like that shown in the figure below, the battery is removed and the inductor is connected directly across the resistor. a S2 R ε b BEL → (c) In what time interval (in s) will the current decrease to 50.0% of its initial value? S (d) In what time interval (in s) will the current decrease to 10.0% of its initial value? Sarrow_forwardIf the current in an inductor changes by a factor of 3.6, by what factor does the the energy in the inductor change?arrow_forwardA 12.0 V battery is connected into a series circuit containing a 20.0 resistor and a 1.50 H inductor. (a) In what time interval (in s) will the current reach 50.0% of its final value? S (b) In what time interval (in s) will the current reach 90.0% of its final value? S What If? After a very long time, using a switch like that shown in the figure below, the battery is removed and the inductor is connected directly across the resistor. R Są ob ก ε ele (c) In what time interval (in s) will the current decrease to 50.0% of its initial value? S (d) In what time interval (in s) will the current decrease to 10.0% of its initial value? Sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning