EBK PHYSICS FOR SCIENTISTS AND ENGINEER
9th Edition
ISBN: 8220100581557
Author: Jewett
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 32, Problem 32.62AP
An inductor having inductance I. and a capacitor having capacitance C are connected in series. The current in the circuit increases linearly in time as described by i = Kt, where A is a constant. The capacitor is initially uncharged. Determine (a) the voltage across the inductor as a function of time, (b) the voltage across the capacitor as a function of time, and (c) the time when the energy stored in the capacitor first exceeds that in the inductor.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
The diagram shows a simple electric circuit consisting of a power source, a resistor, and an inductor. If voltage V is first applied at time t = 0, then the current I flowing through the circuit at time t is given by I as attached, where L is the inductance and R is the resistance. Use L’Hôpital’s Rule to find the formula for the current by fixing V and L and letting R approach 0 from the right.
A battery of emf E is connected in series with a resistor, an inductor L, and a switch S. A capacitor C is connected in parallel to the inductor. When the switch is left in the closed position for a long time, the potential difference across the
capacitor is zero. The switch is opened and the maximum potential difference across the capacitor is measured to be 140 V. Determine the capacitance of the capacitor if E = 60 V, R = 125 N, and L = 54.0 mH.
ww
R
A fully-charged capacitor with
C = 113nF is connected in series with a
resistor (w/ R = 867N) and an inductor
(w/ L = 158mH). What is the frequency
(in kHz) of the underdamped oscillation?
Chapter 32 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Ch. 32 - A coil with zero resistance has its ends labeled a...Ch. 32 - Prob. 32.2QQCh. 32 - Prob. 32.3QQCh. 32 - Prob. 32.4QQCh. 32 - (i) At an instant of time during the oscillations...Ch. 32 - Prob. 32.1OQCh. 32 - Prob. 32.2OQCh. 32 - Prob. 32.3OQCh. 32 - In Figure OQ32.4, the switch is left in position a...Ch. 32 - Prob. 32.5OQ
Ch. 32 - Prob. 32.6OQCh. 32 - Prob. 32.7OQCh. 32 - Prob. 32.1CQCh. 32 - Prob. 32.2CQCh. 32 - A switch controls the current in a circuit that...Ch. 32 - Prob. 32.4CQCh. 32 - Prob. 32.5CQCh. 32 - Prob. 32.6CQCh. 32 - The open switch in Figure CQ32.7 is thrown closed...Ch. 32 - After the switch is dosed in the LC circuit shown...Ch. 32 - Prob. 32.9CQCh. 32 - Discuss the similarities between the energy stored...Ch. 32 - Prob. 32.1PCh. 32 - Prob. 32.2PCh. 32 - Prob. 32.3PCh. 32 - Prob. 32.4PCh. 32 - An emf of 24.0 mV Ls induced in a 500-turn coil...Ch. 32 - Prob. 32.6PCh. 32 - Prob. 32.7PCh. 32 - Prob. 32.8PCh. 32 - Prob. 32.9PCh. 32 - Prob. 32.10PCh. 32 - Prob. 32.11PCh. 32 - A toroid has a major radius R and a minor radius r...Ch. 32 - Prob. 32.13PCh. 32 - Prob. 32.14PCh. 32 - Prob. 32.15PCh. 32 - Prob. 32.16PCh. 32 - Prob. 32.17PCh. 32 - Prob. 32.18PCh. 32 - Prob. 32.19PCh. 32 - When the switch in Figure P32.18 is closed, the...Ch. 32 - Prob. 32.21PCh. 32 - Show that i = Iiet/ is a solution of the...Ch. 32 - Prob. 32.23PCh. 32 - Consider the circuit in Figure P32.18, taking =...Ch. 32 - Prob. 32.25PCh. 32 - The switch in Figure P31.15 is open for t 0 and...Ch. 32 - Prob. 32.27PCh. 32 - Prob. 32.28PCh. 32 - Prob. 32.29PCh. 32 - Two ideal inductors, L1 and L2, have zero internal...Ch. 32 - Prob. 32.31PCh. 32 - Prob. 32.32PCh. 32 - Prob. 32.33PCh. 32 - Prob. 32.34PCh. 32 - Prob. 32.35PCh. 32 - Complete the calculation in Example 31.3 by...Ch. 32 - Prob. 32.37PCh. 32 - A flat coil of wire has an inductance of 40.0 mH...Ch. 32 - Prob. 32.39PCh. 32 - Prob. 32.40PCh. 32 - Prob. 32.41PCh. 32 - Prob. 32.42PCh. 32 - Prob. 32.43PCh. 32 - Prob. 32.44PCh. 32 - Prob. 32.45PCh. 32 - Prob. 32.46PCh. 32 - In the circuit of Figure P31.29, the battery emf...Ch. 32 - A 1.05-H inductor is connected in series with a...Ch. 32 - A 1.00-F capacitor is charged by a 40.0-V power...Ch. 32 - Calculate the inductance of an LC circuit that...Ch. 32 - An LC circuit consists of a 20.0-mH inductor and a...Ch. 32 - Prob. 32.52PCh. 32 - Prob. 32.53PCh. 32 - Prob. 32.54PCh. 32 - An LC circuit like the one in Figure CQ32.8...Ch. 32 - Show that Equation 32.28 in the text Ls Kirchhoffs...Ch. 32 - In Figure 31.15, let R = 7.60 , L = 2.20 mH, and C...Ch. 32 - Consider an LC circuit in which L = 500 mH and C=...Ch. 32 - Electrical oscillations are initiated in a series...Ch. 32 - Review. Consider a capacitor with vacuum between...Ch. 32 - Prob. 32.61APCh. 32 - An inductor having inductance I. and a capacitor...Ch. 32 - A capacitor in a series LC circuit has an initial...Ch. 32 - Prob. 32.64APCh. 32 - When the current in the portion of the circuit...Ch. 32 - At the moment t = 0, a 24.0-V battery is connected...Ch. 32 - Prob. 32.67APCh. 32 - Prob. 32.68APCh. 32 - Prob. 32.69APCh. 32 - At t = 0, the open switch in Figure P31.46 is...Ch. 32 - Prob. 32.71APCh. 32 - Prob. 32.72APCh. 32 - Review. A novel method of storing energy has been...Ch. 32 - Prob. 32.74APCh. 32 - Review. The use of superconductors has been...Ch. 32 - Review. A fundamental property of a type 1...Ch. 32 - Prob. 32.77APCh. 32 - In earlier times when many households received...Ch. 32 - Assume the magnitude of the magnetic field outside...Ch. 32 - Prob. 32.80CPCh. 32 - To prevent damage from arcing in an electric...Ch. 32 - One application of an RL circuit is the generation...Ch. 32 - Prob. 32.83CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A charged capacitor and an inductor are connected in series. At time t = 0 the current is zero, but the capacitor is charged. If T is the period of the resulting oscillations, the next time after t = 0 that the current is a maximum is ?arrow_forwardThis problem concerns the electric circuit shown in the figure below. where C is the capacitance and L is the inductance, so A charged capacitor connected to an inductor causes a current to flow through the inductor until the capacitor is fully discharged. The current in the inductor, in turn, charges up the capacitor until the capacitor is fully charged again. If Q(t) is the charge on the capacitor at time t, and I is the current, then dQ dt If the circuit resistance is zero, then the charge Q and the current I in the circuit satisfy the differential equation dI 'dt + If L=1 henry, R=1 ohm, and C = 4 farads, find a formula for the charge when (a) Q (0) = 0 and Q (0) = 5: Q(t)= 4e^(-1/2) Capacitor L (b) Q(0) = 5 and Q (0) = 0: Q(t) = Resistor mamm DOUVID Inductor L I= 8²0+0=0 d²Q dt2 Then, just as as a spring can have a damping force which affects its motion, so can a circuit; this is introduced by the resistor, so that if the resistance of the resistor is R d²Q dQ dt +R dt² +9=0. www…arrow_forwardAn inductor with inductance L is connected to an AC source. If the AC source provides a voltage VL(t) = V0cos(omegat), what is the current IL through the inductor as a function of time? Use the cosine function.arrow_forward
- A capacitor with 4.0x 10-6 F and initial charge Q=6.0x10-3 C is connected to an inductor that has L= 2.0H and negligible resistance. During the current oscillations, what is the current in the inductor when the charge on the capacitor is q=-3.0x 10-3 Carrow_forwardThree inductors are connected in parallel in an electric circuit. If the inductance of the first inductor is L, of the second inductor is 1.5 L, and of the third inductor is 2 L, what is the equivalent inductance?arrow_forwardAn inductor with inductance L is connected to an AC source. If the AC source provides a voltage VL(t) = V0cos(omegat), what is the current IL(t) through the inductor as a function of time?arrow_forward
- An electrical engineer connects an inductor and initially uncharged capacitor in series, and notes that the current in the circuit can be modeled by the equation i = bt, where b is a constant. (a) Determine the voltage across the inductor as a function of time. (Use the following as necessary: t for time, L for the inductor, and b.) E̟ = (b) Determine the voltage across the capacitor as a function of time. (Use the following as necessary: t for time, C for the capacitor, and b.) Avc = (c) Determine the time when the energy stored in the capacitor first exceeds that in the inductor. (Use the following as necessary: C for the capacitor, L for the inductor, and b.) t =arrow_forwardWhen an inductor is attached to a charged capacitor with a resistor in series, what determines how long the oscillations in the circuit last before the voltage is some fraction of its initial value? The ratio of L/R The square root of L times C The voltage on the capacitor at the beginning. The square root of the ratio of L/C The product of R and Carrow_forwardAn L-C Circuit consists of an inductor with an inductance of 65.0 mH and a capacitor with a capacitance of 300 uF. The initial charge on the capacitor is 6.00 uC, and the initial current in the inductor is zero.arrow_forward
- a circuit having an inductance of L=2mH has a current that varies with time as I=t^3e^-t. find the time it takes for EMF to become zeroarrow_forwardA simple electric circuit consisting of a resistor, a capacitor, and an inductor is depicted as shown below. The charge on the capacitor q(t) as a function of time can be computed as 9(1) = goe-Rt/(2L) Cos LC 2L where t = time, q0 = the initial charge, R = the resistance, L = inductance, and C = capacitance. Use MATLAB to generate a plot of this function from t= 0 to 0.8 with an increment of 0.001, given that q0= 10, R = 60, L = 9, and C = 0.00005. What is the maximum value of q= Blank 1? Express your answer to the nearest whole number. Blank 1 Add your answerarrow_forwardAn RL circuit has an emf source of 28 v, a 62 resistor, a 38 H inductor, and a switch. At what rate, as a function of t, does the emf across the inductor change after the switch is closed?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Introduction To Alternating Current; Author: Tutorials Point (India) Ltd;https://www.youtube.com/watch?v=0m142qAZZpE;License: Standard YouTube License, CC-BY