
EBK COMPUTER SYSTEMS
3rd Edition
ISBN: 8220101459107
Author: O'HALLARON
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3.10, Problem 3.48PP
A.
Program Plan Intro
Load Effective Address:
- The load effective address instruction “leaq” is a variant of “movq” instruction.
- The instruction form reads memory to a register, but memory is not been referenced at all.
- The first operand of instruction is a memory reference; the effective address is been copied to destination.
- The pointers could be generated for later references of memory.
- The common arithmetic operations could be described compactly using this instruction.
- The operand in destination should be a register.
Data movement instructions:
- The different instructions are been grouped as “instruction classes”.
- The instructions in a class performs same operation but with different sizes of operand.
- The “Mov” class denotes data movement instructions that copy data from a source location to a destination.
- The class has 4 instructions that includes:
- movb:
- It copies data from a source location to a destination.
- It denotes an instruction that operates on 1 byte data size.
- movw:
- It copies data from a source location to a destination.
- It denotes an instruction that operates on 2 bytes data size.
- movl:
- It copies data from a source location to a destination.
- It denotes an instruction that operates on 4 bytes data size.
- movq:
- It copies data from a source location to a destination.
- It denotes an instruction that operates on 8 bytes data size.
- movb:
Comparison Instruction:
- The “CMP” instruction sets condition code according to differences of their two operands.
- The working pattern is same as “SUB” instruction but it sets condition code without updating destinations.
- The zero flag is been set if two operands are equal.
- The ordering relations between operands could be determined using other flags.
- The “cmpl” instruction compares values that are double word.
Unary and Binary Operations:
- The details of unary operations includes:
- The single operand functions as both source as well as destination.
- It can either be a memory location or a register.
- The instruction “incq” causes 8 byte element on stack top to be incremented.
- The instruction “decq” causes 8 byte element on stack top to be decremented.
- The details of binary operations includes:
- The first operand denotes the source.
- The second operand works as both source as well as destination.
- The first operand can either be an immediate value, memory location or register.
- The second operand can either be a register or a memory location.
B.
Explanation of Solution
Rearranged ordering provides greater security:
- In protected code, the local variables “v” is placed closer to stack top than “buf”...
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
CSE330: Discrete Mathematics
1. In the classes, we discussed three forms of floating number representations as given below, (1)
Standard/General Form, (2) Normalized Form, (3) Denormalized Form. Now, let's take, ẞ = 2, m
= 3, emin = -2 and emax = 3. Based on these, answer the following:
(a)
(b)
(c)
(d)
What are the maximum/largest numbers that can be stored in the system by these
three forms defined above? (express your answer in decimal values)
What are the non-negative minimum/smallest numbers that can be stored in the
system by the denormalized form? (express your answer in decimal values)
How many numbers (both non-negative and negative) can be represented in the
above mentioned system using the general form? Explain your answer.
Find all the decimal numbers for e = 3 and e = 2 in denormalized form, plot them on a
real line and prove that all the numbers are not equally spaced. Write the equally spaced sets for
the number line you drew.
show
your answer in
Don't use any Al tool
pen…
3.[20 pts] Find the minimum equivalent circuit for the one shown below (show your work):
DAB
0
f(A,B,C,D)
Suppose your computer is responding very slowly to information requests from the Internet. You observe that your network gateway shows high levels of network activity even though you have closed your e-mail client, Web browser, and all other programs that access the Internet.
What types of malwares could cause such symptoms? What steps can you take to check whether malware has gained access to your system? What tools can you use at each step? If you identify malware, what ways might it have entered your system? How can you restore your PC to safe operation, including the special software tools you may use?
Chapter 3 Solutions
EBK COMPUTER SYSTEMS
Ch. 3.4 - Prob. 3.1PPCh. 3.4 - Prob. 3.2PPCh. 3.4 - Prob. 3.3PPCh. 3.4 - Prob. 3.4PPCh. 3.4 - Prob. 3.5PPCh. 3.5 - Prob. 3.6PPCh. 3.5 - Prob. 3.7PPCh. 3.5 - Prob. 3.8PPCh. 3.5 - Prob. 3.9PPCh. 3.5 - Prob. 3.10PP
Ch. 3.5 - Prob. 3.11PPCh. 3.5 - Prob. 3.12PPCh. 3.6 - Prob. 3.13PPCh. 3.6 - Prob. 3.14PPCh. 3.6 - Prob. 3.15PPCh. 3.6 - Prob. 3.16PPCh. 3.6 - Practice Problem 3.17 (solution page 331) An...Ch. 3.6 - Practice Problem 3.18 (solution page 332) Starting...Ch. 3.6 - Prob. 3.19PPCh. 3.6 - Prob. 3.20PPCh. 3.6 - Prob. 3.21PPCh. 3.6 - Prob. 3.22PPCh. 3.6 - Prob. 3.23PPCh. 3.6 - Practice Problem 3.24 (solution page 335) For C...Ch. 3.6 - Prob. 3.25PPCh. 3.6 - Prob. 3.26PPCh. 3.6 - Practice Problem 3.27 (solution page 336) Write...Ch. 3.6 - Prob. 3.28PPCh. 3.6 - Prob. 3.29PPCh. 3.6 - Practice Problem 3.30 (solution page 338) In the C...Ch. 3.6 - Prob. 3.31PPCh. 3.7 - Prob. 3.32PPCh. 3.7 - Prob. 3.33PPCh. 3.7 - Prob. 3.34PPCh. 3.7 - Prob. 3.35PPCh. 3.8 - Prob. 3.36PPCh. 3.8 - Prob. 3.37PPCh. 3.8 - Prob. 3.38PPCh. 3.8 - Prob. 3.39PPCh. 3.8 - Prob. 3.40PPCh. 3.9 - Prob. 3.41PPCh. 3.9 - Prob. 3.42PPCh. 3.9 - Practice Problem 3.43 (solution page 344) Suppose...Ch. 3.9 - Prob. 3.44PPCh. 3.9 - Prob. 3.45PPCh. 3.10 - Prob. 3.46PPCh. 3.10 - Prob. 3.47PPCh. 3.10 - Prob. 3.48PPCh. 3.10 - Prob. 3.49PPCh. 3.11 - Practice Problem 3.50 (solution page 347) For the...Ch. 3.11 - Prob. 3.51PPCh. 3.11 - Prob. 3.52PPCh. 3.11 - Practice Problem 3.52 (solution page 348) For the...Ch. 3.11 - Practice Problem 3.54 (solution page 349) Function...Ch. 3.11 - Prob. 3.55PPCh. 3.11 - Prob. 3.56PPCh. 3.11 - Practice Problem 3.57 (solution page 350) Function...Ch. 3 - For a function with prototype long decoda2(long x,...Ch. 3 - The following code computes the 128-bit product of...Ch. 3 - Prob. 3.60HWCh. 3 - In Section 3.6.6, we examined the following code...Ch. 3 - The code that follows shows an example of...Ch. 3 - This problem will give you a chance to reverb...Ch. 3 - Consider the following source code, where R, S,...Ch. 3 - The following code transposes the elements of an M...Ch. 3 - Prob. 3.66HWCh. 3 - For this exercise, we will examine the code...Ch. 3 - Prob. 3.68HWCh. 3 - Prob. 3.69HWCh. 3 - Consider the following union declaration: This...Ch. 3 - Prob. 3.71HWCh. 3 - Prob. 3.72HWCh. 3 - Prob. 3.73HWCh. 3 - Prob. 3.74HWCh. 3 - Prob. 3.75HW
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-engineering and related others by exploring similar questions and additional content below.Similar questions
- R languagearrow_forwardUsing R languagearrow_forwardCompare the security services provided by a digital signature (DS) with those of a message authentication code (MAC). Assume that Oscar can observe all messages sent between Rina and Naseem. Oscar has no knowledge of any keys but the public one, in the case of DS. State whether DS and MAC protect against each attack and, if they do, how. The value auth(x) is computed with a DS or a MAC algorithm. In each scenario, assume the message M = x#####auth(x). (Message integrity) Rina has the textual data x = “Transfer $1000 to Mark” to send to Naseem. To ensure the integrity of the data, Rina generates auth(x), forms a message M, and then sends M in cleartext to Naseem. Oscar intercepts the message and replaces “Mark” with “Oscar.” Will Naseem detect this in the case of either DS or MAC? If yes, how will Naseem detect it? If not, why? (Replay) Rina has the textual data x = “Transfer $1000 to Mark” to send to Naseem. To ensure the integrity of the data, Rina generates auth(x), forms a message…arrow_forward
- I need to resolve the following....You are trying to convince your boss that your company needs to invest in a license for MS-Project (project management software from Microsoft) before beginning a systems project. What arguments would you give her?arrow_forwardWhat are the four types of feasibility? what is the issues addressed by each feasibility component.arrow_forwardI would like to get ab example of a situation where Agile Methods might be preferable versus the traditional SDLC? What are the characteristics of this situation that give Agile Methods an advantage?arrow_forward
- What is a functional decomposition diagram? what is a good example of a high level task being broken down into tasks in at least two lower levels (three levels in all).arrow_forwardWhat are the advantages to using a Sytems Analysis and Design model like the SDLC vs. other approaches?arrow_forward3. Problem Description: Define the Circle2D class that contains: Two double data fields named x and y that specify the center of the circle with get methods. • A data field radius with a get method. • A no-arg constructor that creates a default circle with (0, 0) for (x, y) and 1 for radius. • A constructor that creates a circle with the specified x, y, and radius. • A method getArea() that returns the area of the circle. • A method getPerimeter() that returns the perimeter of the circle. • • • A method contains(double x, double y) that returns true if the specified point (x, y) is inside this circle. See Figure (a). A method contains(Circle2D circle) that returns true if the specified circle is inside this circle. See Figure (b). A method overlaps (Circle2D circle) that returns true if the specified circle overlaps with this circle. See the figure below. р O со (a) (b) (c)< Figure (a) A point is inside the circle. (b) A circle is inside another circle. (c) A circle overlaps another…arrow_forward
- 1. Explain in detail with examples each of the following fundamental security design principles: economy of mechanism, fail-safe default, complete mediation, open design, separation of privilege, least privilege, least common mechanism, psychological acceptability, isolation, encapsulation, modularity, layering, and least astonishment.arrow_forwardSecurity in general means the protection of an asset. In the context of computer and network security, explore and explain what assets must be protected within an online university. What the threats are to the security of these assets, and what countermeasures are available to mitigate and protect the organization from such threats. For each of the assets you identify, assign an impact level (low, moderate, or high) for the loss of confidentiality, availability, and integrity. Justify your answers.arrow_forwardPlease include comments and docs comments on the program. The two other classes are Attraction and Entertainment.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- C++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology PtrC++ Programming: From Problem Analysis to Program...Computer ScienceISBN:9781337102087Author:D. S. MalikPublisher:Cengage LearningSystems ArchitectureComputer ScienceISBN:9781305080195Author:Stephen D. BurdPublisher:Cengage Learning

C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr

C++ Programming: From Problem Analysis to Program...
Computer Science
ISBN:9781337102087
Author:D. S. Malik
Publisher:Cengage Learning

Systems Architecture
Computer Science
ISBN:9781305080195
Author:Stephen D. Burd
Publisher:Cengage Learning