In Fig. 31-35, let the rectangular box on the left represent the (high-impedance) output of an audio amplifier, with r = 1000 Ω. Let R = 10 Ω represent the (low-impedance) coil of a loudspeaker. For maximum transfer of energy to the load R we must have R = r , and that is not true in this case. However, a transformer can be used to “transform" resistances, making them behave electrically as if they were larger or smaller than they actually are. (a) Sketch the primary and secondary coils of a transformer that can be introduced between the amplifier and the speaker in Fig. 31-35 to match the impedances. (b) What must be the turns ratio?
In Fig. 31-35, let the rectangular box on the left represent the (high-impedance) output of an audio amplifier, with r = 1000 Ω. Let R = 10 Ω represent the (low-impedance) coil of a loudspeaker. For maximum transfer of energy to the load R we must have R = r , and that is not true in this case. However, a transformer can be used to “transform" resistances, making them behave electrically as if they were larger or smaller than they actually are. (a) Sketch the primary and secondary coils of a transformer that can be introduced between the amplifier and the speaker in Fig. 31-35 to match the impedances. (b) What must be the turns ratio?
In Fig. 31-35, let the rectangular box on the left represent the (high-impedance) output of an audio amplifier, with r = 1000 Ω. Let R = 10 Ω represent the (low-impedance) coil of a loudspeaker. For maximum transfer of energy to the load R we must have R =r, and that is not true in this case. However, a transformer can be used to “transform" resistances, making them behave electrically as if they were larger or smaller than they actually are. (a) Sketch the primary and secondary coils of a transformer that can be introduced between the amplifier and the speaker in Fig. 31-35 to match the impedances. (b) What must be the turns ratio?
3.63 • Leaping the River II. A physics professor did daredevil
stunts in his spare time. His last stunt was an attempt to jump across
a river on a motorcycle (Fig. P3.63). The takeoff ramp was inclined at
53.0°, the river was 40.0 m wide, and the far bank was 15.0 m lower
than the top of the ramp. The river itself was 100 m below the ramp.
Ignore air resistance. (a) What should his speed have been at the top of
the ramp to have just made it to the edge of the far bank? (b) If his speed
was only half the value found in part (a), where did he land?
Figure P3.63
53.0°
100 m
40.0 m→
15.0 m
Please solve and answer the question correctly please. Thank you!!
You throw a small rock straight up from the edge of a highway bridge that crosses a river. The rock passes you on its way down, 5.00 s after it was thrown. What is the speed of the rock just before it reaches the water 25.0 m below the point where the rock left your hand? Ignore air resistance.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.