bartleby

Concept explainers

Question
Book Icon
Chapter 31, Problem 43AP
To determine

The current in the capacitor in the circuit after 1s .

Blurred answer
Students have asked these similar questions
A resistor of resistance R = 10 Ω is connected in series with an inductor of L = 15 mH. The RL combination is connected to a variable voltage power supply (V = 4.5 V) by a switch as shown. a. What is the time constant (τ) of the combination in seconds?  b. The power supply is set to maintain a constant voltage of V = 4.5 V and the switch is closed. Calculate the current, in amperes, through the circuit at t = 0.29 ms after the switch is closed.  c. Calculate the current through the circuit, in amperes, after the switch has been closed for a long time.
Consider the circuit shown in the figure below, where  L = 5.45 mH  and  R2 = 500 Ω.  The switch S can be positioned at either a or b. A circuit contains a battery, a switch, an inductor, and two resistors. The battery is labeled 24.0 V and is on the left side of the circuit. The positive terminal is above the negative terminal. The circuit starts at the positive terminal and extends directly up, then directly to the right where it reaches the switch at a point labeled a. The switch is labeled S and allows the circuit to alternate between two paths. The first path starts at the positive terminal of the battery, goes up and then to the right through the switch from the point labeled a to a point without a label, goes to the right through the inductor labeled L at the top of the circuit, goes down through the resistors labeled R1 and R2 placed in parallel with each other on the right side of the circuit, goes to the left through a wire running directly from the right side of the circuit…
A battery of emf E is connected in series with a resistor, an inductor L, and a switch S. A capacitor C is connected in parallel to the inductor. When the switch is left in the closed position for a long time, the potential difference across the capacitor is zero. The switch is opened and the maximum potential difference across the capacitor is measured to be 140 V. Determine the capacitance of the capacitor if E = 60 V, R = 125 N, and L = 54.0 mH. ww R

Chapter 31 Solutions

Bundle: Physics For Scientists And Engineers With Modern Physics, 10th + Webassign Printed Access Card For Serway/jewett's Physics For Scientists And Engineers, 10th, Multi-term

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning