
Concept explainers
(a)
The magnetic field at the surface of the inner conductor.
(a)

Answer to Problem 47AP
The magnetic field at the surface of the inner conductor is
Explanation of Solution
Given info: The power carry by the coaxial cable is
Formula to calculate the current flow in the coaxial cable is,
Here,
Substitute
Thus, the current flow in the coaxial cable is
Formula to calculate the magnetic field at inner conductor from Ampere’s law is,
Here,
Substitute
Conclusion:
Therefore, the magnetic field at the surface of the inner conductor is
(b)
The magnetic field at the inner surface of the outer conductor.
(b)

Answer to Problem 47AP
The magnetic field at the inner surface of the outer conductor is
Explanation of Solution
Given info: The power carry by the coaxial cable is
Formula to calculate the magnetic field at inner surface of outer conductor from Ampere’s law is,
Here,
Substitute
Conclusion:
Therefore, the magnetic field at the surface of the inner conductor is
(c)
The energy that would be stored in the magnetic field in the space between the conductors.
(c)

Answer to Problem 47AP
The energy that stored in the magnetic field in the space between the conductors is
Explanation of Solution
Given info: The power carry by the coaxial cable is
Formula to calculate the energy density store in magnetic field is,
Formula to calculate the total energy stored in the magnetic field in the space between the conductors is,
Here,
Write the expression for the small arbitrary volume.
Here,
Formula to calculate the magnetic field from Ampere’s law is,
Substitute
Integrate the above equation within limits.
Substitute
Conclusion:
Therefore, the energy that stored in the magnetic field in the space between the conductors is
(d)
The pressure exerted on the conductor due to the current in the inner conductor.
(d)

Answer to Problem 47AP
The pressure exerted on the conductor due to the current in the inner conductor is
Explanation of Solution
Given info: The power carry by the coaxial cable is
The magnetic field created by the inner conductor exerts a force of repulsion on the current in the outer sheath. The strength of this magnetic field is calculated in part (b) that is
Write the expression for the projection area of the outer conductor.
Write the expression for the circumferential area of the outer conductor.
Formula to calculate the current flow in the outer cylinder is,
Here,
Substitute
Substitute
Formula to calculate the force experience by the outer conductor is,
Formula to calculate the pressure exerted on the conductor due to the current is,
Substitute
Substitute
Conclusion:
Therefore, the pressure exerted on the conductor due to the current in the inner conductor is
Want to see more full solutions like this?
Chapter 31 Solutions
Bundle: Physics For Scientists And Engineers With Modern Physics, 10th + Webassign Printed Access Card For Serway/jewett's Physics For Scientists And Engineers, 10th, Multi-term
- (a) For a spherical capacitor with inner radius a and outer radius b, we have the following for the capacitance. ab C = k₂(b- a) 0.0695 m 0.145 m (8.99 × 10º N · m²/c²)( [0.145 m- 0.0695 m × 10-11 F = PF IIarrow_forwardA pendulum bob A (0.5 kg) is given an initialspeed of vA = 4 m/s when the chord ishorizontal. It then hits a stationary block B (1kg) which then slides to a maximum distanced before it stops. Determine the value of d.The coefficient of static friction between theblock and the plane is μk = 0.2. The coefficientof restitution between A and B is e = 0.8.Ans: d=1.0034 marrow_forwardFigure 29-43 Problem 12. ••13 In Fig. 29-44, point P₁ is at distance R = 13.1 cm on the perpendicular bisector of a straight wire of length L = 18.0 cm carrying current i = 58.2 mA. (Note that the wire is not long.) What is the magnitude of the magnetic field at P₁ due to i? P2° R R Larrow_forward
- Checkpoint 1 The figure shows the current i in a single-loop circuit with a battery B and a resistance R (and wires of neg- ligible resistance). (a) Should the emf arrow at B be drawn pointing leftward or rightward? At points a, B C R b, and c, rank (b) the magnitude of the current, (c) the electric potential, and (d) the electric potential energy of the charge carriers, greatest first.arrow_forwardPls help ASAParrow_forwardPls help asaparrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill





