
Concept explainers
(a)
The magnitude of the force, which is exerted on an electron in time varying magnetic field.
(a)

Answer to Problem 39P
The magnitude of the force which is exerted on an electron in time varying magnetic field is
Explanation of Solution
Follow the right-handed cylindrical coordinate system.
Write the expression for Faraday’s law.
Here,
Write the expression for area.
Here,
Write the expression for length element.
Here,
Write the expression for magnitude of force on electron.
Here,
Let the electric field be in clockwise
Substitute
Substitute
Conclusion:
Substitute
Therefore, the magnitude of the force on electron is
(b)
The direction of the force, which is exerted on an electron in time varying magnetic field.
(b)

Answer to Problem 39P
The direction of force exerted on an electron is clockwise if seen from above.
Explanation of Solution
The direction of the electric field has to be in the clockwise direction. It is clear from equation (I) that the direction of
Therefore, direction of force exerted on the electron is clockwise if seen from above.
(c)
The time when force on the electron is equal to zero.
(c)

Answer to Problem 39P
The force on the electron is equal to zero at
Explanation of Solution
In the time varying magnetic field, force on the electron must be zero for particular instant of time.
Conclusion:
Substitute
Further solve the equation.
Therefore, force on electron is equal to zero at
Want to see more full solutions like this?
Chapter 31 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
- Pls help asaparrow_forward3. If the force of gravity stopped acting on the planets in our solar system, what would happen? a) They would spiral slowly towards the sun. b) They would continue in straight lines tangent to their orbits. c) They would continue to orbit the sun. d) They would fly straight away from the sun. e) They would spiral slowly away from the sun. 4. 1 The free-body diagram of a wagon being pulled along a horizontal surface is best represented by A F N B C 0 Ꭰ FN E a) A b) B c) C app app The app 10 app d) e) ס ח D E 10 apparrow_forwardPls help ASAParrow_forward
- Pls help asaparrow_forwardPls help asaparrow_forwardThe acceleration of an object sliding along a frictionless ramp is inclined at an angle 0 is 9. a) g tano b) g cose c) g sino 10. d) g e) zero A 1.5 kg cart is pulled with a force of 7.3 N at an angle of 40° above the horizontal. If a kinetic friction force of 3.2 N acts against the motion, the cart's acceleration along the horizontal surface will be a) 5.0 m/s² b) 1.6 m/s² c) 2.4 m/s² 11. d) 1.0 m/s² e) 2.7 m/s² What is the net force acting on an object with a mass of 10 kg moving at a constant velocity of 10 m/s [North]? a) 100 N [North] b) 100 N [South] 10 N [North} d) 10 N [South] e) None of these.arrow_forward
- Modified True/False - indicate whether the sentence or statement is true or false. If the statement is false, correct the statement to make it true. 12. An object in uniform circular motion has a constant velocity while experiencing centripetal acceleration. 13. An object travelling in uniform circular motion experiences an outward centrifugal force that tends to pull the object out of the circular path. 14. An object with less inertia can resist changes in motion more than an object with more inertia. 15. For an object sliding on a horizontal surface with a horizontal applied force, the frictional force will always increase as the applied force increases.arrow_forwardPls help asaparrow_forwardAnswer the given question showing step by step by and all necessary working out.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





