Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
9th Edition
ISBN: 9781305266292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 31, Problem 14P
To determine
The induced emf in the 15-turn coil as a function of time.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A coil of 15 turns and radius 10.0 cm surrounds a long Q solenoid of radius 2.00 cm and1.00 × 10s turns/meter (Fig. P31.14). The current in the solenoid changes as I = 5.00 sin 120t, where I is in amperes and t is in seconds. Find the induced emf in the 15-turn coil as a function of time.
A conducting bar of length l moves to the right on two frictionless rails as shown in Figure P31.34. A uniform magnetic field directed into the page has a magnitude of 0.300 T. Assume R = 9.00 Ohm and l = 0.350 m. At what constant speed should the bar move to produce an 8.50-mA current in the resistor? What is the direction of the induced current? At what rate is energy delivered to the resistor? Explain the origin of the energy being delivered to the resistor. snipp
A toroid having a rectangular cross section (a = 2.00 cmby b = 3.00 cm) and inner radius R = 4.10 cm consists of 500 turns of wire that carries asinusoidal current I = Imax sinωt, with Imax =47.5 A and a frequency f =ω/2π = 60.0 Hz. A coil that consists of20 turns of wire links with the toroid, as shown in Figure P31.17.Determine the emf induced in the coil as a function of time.
Chapter 31 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
Ch. 31.1 - A circular loop of wire is held in a uniform...Ch. 31.2 - QUICK QUIZ 30.2 In Figure 30.8a, a given applied...Ch. 31.3 - Figure 30.12 (Quick Quiz 30.3) QUICK QUIZ 30.3...Ch. 31.5 - Prob. 31.4QQCh. 31.6 - Prob. 31.5QQCh. 31 - Prob. 1OQCh. 31 - Prob. 2OQCh. 31 - Prob. 3OQCh. 31 - Prob. 4OQCh. 31 - Prob. 5OQ
Ch. 31 - Prob. 6OQCh. 31 - Prob. 7OQCh. 31 - Prob. 8OQCh. 31 - Prob. 9OQCh. 31 - Prob. 10OQCh. 31 - Prob. 11OQCh. 31 - Prob. 1CQCh. 31 - Prob. 2CQCh. 31 - Prob. 3CQCh. 31 - Prob. 4CQCh. 31 - Prob. 5CQCh. 31 - Prob. 6CQCh. 31 - Prob. 7CQCh. 31 - Prob. 8CQCh. 31 - Prob. 9CQCh. 31 - Prob. 10CQCh. 31 - Prob. 1PCh. 31 - Prob. 2PCh. 31 - Prob. 3PCh. 31 - Prob. 4PCh. 31 - Prob. 5PCh. 31 - Prob. 6PCh. 31 - Prob. 7PCh. 31 - Prob. 8PCh. 31 - Prob. 9PCh. 31 - Scientific work is currently under way to...Ch. 31 - Prob. 11PCh. 31 - Prob. 12PCh. 31 - Prob. 13PCh. 31 - Prob. 14PCh. 31 - Prob. 15PCh. 31 - Prob. 16PCh. 31 - A coil formed by wrapping 50 turns of wire in the...Ch. 31 - Prob. 18PCh. 31 - Prob. 19PCh. 31 - Prob. 20PCh. 31 - Prob. 21PCh. 31 - Prob. 22PCh. 31 - Prob. 23PCh. 31 - A small airplane with a wingspan of 14.0 m is...Ch. 31 - A 2.00-m length of wire is held in an eastwest...Ch. 31 - Prob. 26PCh. 31 - Prob. 27PCh. 31 - Prob. 28PCh. 31 - Prob. 29PCh. 31 - Prob. 30PCh. 31 - Prob. 31PCh. 31 - Prob. 32PCh. 31 - Prob. 33PCh. 31 - Prob. 34PCh. 31 - Prob. 35PCh. 31 - Prob. 36PCh. 31 - Prob. 37PCh. 31 - Prob. 38PCh. 31 - Prob. 39PCh. 31 - Prob. 40PCh. 31 - Prob. 41PCh. 31 - Prob. 42PCh. 31 - Prob. 43PCh. 31 - Prob. 44PCh. 31 - Prob. 45PCh. 31 - Prob. 46PCh. 31 - Prob. 47PCh. 31 - Prob. 48PCh. 31 - The rotating loop in an AC generator is a square...Ch. 31 - Prob. 50PCh. 31 - Prob. 51APCh. 31 - Prob. 52APCh. 31 - Prob. 53APCh. 31 - Prob. 54APCh. 31 - Prob. 55APCh. 31 - Prob. 56APCh. 31 - Prob. 57APCh. 31 - Prob. 58APCh. 31 - Prob. 59APCh. 31 - Prob. 60APCh. 31 - Prob. 61APCh. 31 - Prob. 62APCh. 31 - Prob. 63APCh. 31 - Prob. 64APCh. 31 - Prob. 65APCh. 31 - Prob. 66APCh. 31 - Prob. 67APCh. 31 - A conducting rod moves with a constant velocity in...Ch. 31 - Prob. 69APCh. 31 - Prob. 70APCh. 31 - Prob. 71APCh. 31 - Prob. 72APCh. 31 - Prob. 73APCh. 31 - Prob. 74APCh. 31 - Prob. 75APCh. 31 - Prob. 76APCh. 31 - Prob. 77APCh. 31 - Prob. 78APCh. 31 - Prob. 79CPCh. 31 - Prob. 80CPCh. 31 - Prob. 81CPCh. 31 - Prob. 82CPCh. 31 - Prob. 83CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A rectangular conducting loop with dimensions w = 32.0 cm and h = 78.0 cm is placed a distance a = 5.00 cm from a long, straight wire carrying current I = 7.00 A in the downward direction (Fig. P32.75). a. What is the magnitude of the magnetic flux through the loop? b. If the current in the wire is increased linearly from 7.00 A to 15.0 A in 0.230 s, what is the magnitude of the induced emf in the loop? c. What is the direction of the current that is induced in the loop during this time interval?arrow_forwardA loop of wire in the shape of a rectangle of width w and length L and a long, straight wire carrying a current I lie on a tabletop as shown in Figure P23.7. (a) Determine the magnetic flux through the loop due to the current I. (b) Suppose the current is changing with time according to I = a + bt, where a and b are constants. Determine the emf that is induced in the loop if b = 10.0 A/s, h = 1.00 cm, w = 10.0 cm, and L = 1.00 m. (c) What is the direction of the induced current in the rectangle? Figure P23.7arrow_forwardA long, straight wire carries a current given by I = Imax sin (t + ). The wire lies in the plane of a rectangular coil of N turns of wire as shown in Figure P30.45. The quantities Imax, , and are all constants. Assume Imax = 50.0 A, = 200 s1, N = 100, h = = 5.00 cm, and L = 20.0 cm. Determine the emf induced in the coil by the magnetic field created by the current in the straight wire. Figure P30.45arrow_forward
- The magnetic field through a square loop of wire with sides of length 3.00 cm changes with time as shown in Figure P32.8, where the sign indicates the direction of the field relative to the axis of the loop. Plot the emf induced in the loop versus time. FIGURE P32.8arrow_forward(a) If the emf of a coil rotating in a magnetic field is zero at t = 0, and increases to its first peak at t = 0.100 ms, what is the angular velocity of the coil? (b) At what time will its next maximum occur? (c) What is the period of the output? (d) When is the output first one-fourth at its maximum? (e) When is it next one-fourth at its maximum?arrow_forwardA rectangular toroid with inner radius R1= 7.0cm, outer radius R2= 9.0cm, height h = 3.0, and N=3.0, and N = 3000 turns is filled with an iron core a magnetic susceptibility 5.2 × 103. (a) What is the self-inductance of the toroid? (b) If the current through the toroid is 2.0 A, what is the magnetic field at the center of the core? (c) For this same 2.0-A current, what is the effective surface current formed by the aligned atomic current loops in the iron core?arrow_forward
- ☺☺ 000000000 What is the length of the rod? m ·V 000 500 50000 A rod is moving from left to right toward a resistor along two parallel conducting rails. The entire loop is inside a magnetic field oriented out of the page. The rod is moving at 54, the magnetic field has a magnitude of 4.3 T, and the induced emf in the loop is 12.5 V. The resistor has a resistance of 61 Q. What is the current through the rod? I = A R What is the magnitude of the Lorentz Force on the rod? F = Narrow_forward7arrow_forwardAn L = 47.0 ncm wire is moving to the right at a speed of v = 6.50 m/s across two parallel wire rails that are connected on the left side, as shown in the figure. The whole apparatus is immersed in a uniform magnetic field that has a magnitude of B = 0.910 T and is directed into the screen. What is the emf induced in the wire? If the moving wire and the rails have a combined total resistance of 1.15 Ohms, what applied force would be required to keep the wire moving at the given velocity? Assume that there is no friction between the moving wire and the rails.arrow_forward
- A circular loop of wire (area A = 0.20 m?) is placed in a uniform magnetic field that is perpendicular to the page, into the page. The magnetic field increases in time according to the equation: B = 3.0t², where B is in teslas and time is in seconds. The magnitude of the induced emf in the ring at t = 2.0 s is: X Xarrow_forward29.50 Suppose the loop in Fig. P29.50 is (a) rotated about the y-axis; (b) rotated about the x-axis; (c) rotated about an edge parallel to the z-axis. What is the maximum induced emf in each case if A = 600 cm2, w = 35.0 rad/s, and B = 0.320 T?arrow_forwardA 5.0-cm-diameter coil has 20 turns and a resistance of 0.50Ω. A magnetic field perpendicular to the coil is B=0.020t+0.010t2, where B is in tesla and t is in seconds. Find an expression for the induced current I(t) as a function of time. Evaluate I at t=5.0s . Evaluate I at t=10s.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY