UNIVERSITY PHYSICS UCI PKG
11th Edition
ISBN: 9781323575208
Author: YOUNG
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 31, Problem 31.4DQ
Equation (31.14) was derived by using the relationship i = dq/dt between the current and the charge on the capacitor. In Fig. 31.9a the positive counterclockwise current increases the charge on the capacitor. When the charge on the left plate is positive but decreasing in time, is i = dq/dt still correct or should it be i = −dq/dt? Is i = dq/dt still correct when the right-hand plate has positive charge that is increasing or decreasing in magnitude? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Baahshsh
Given below is the table for the Ohm's law experiment. Complete the table.
si Voltage Current in R, Resistance R1 Power in R1 Current in R2 Resistance R2 (Power in R2
No
(V)
IR1 (A)
(2)
P1 (W)
IR2 (A)
(W)
10
0.102
0.031
15
0.151
0.046
3
20
0.199
0.063
Average Value of
R, (2)
Average Value
of R2 (2)
2.
Ch. 26
Chapter 31 Solutions
UNIVERSITY PHYSICS UCI PKG
Ch. 31.1 - The accompanying figure shows four different...Ch. 31.2 - An oscillating voltage of fixed amplitude is...Ch. 31.3 - Rank the following ac circuits in order of their...Ch. 31.4 - Prob. 31.4TYUCh. 31.5 - How does the resonance frequency of an L-R-C...Ch. 31.6 - Each of the following four transformers has 1000...Ch. 31 - Household electric power in most of western Europe...Ch. 31 - The current in an ac power line changes direction...Ch. 31 - In an ac circuit, why is the average power for an...Ch. 31 - Equation (31.14) was derived by using the...
Ch. 31 - Prob. 31.5DQCh. 31 - Equation (31.9) says that ab = L di/dt (see Fig....Ch. 31 - Is it possible for the power factor of an L-R-C...Ch. 31 - In an L-R-C series circuit, can the instantaneous...Ch. 31 - In an L-R-C series circuit, what are the phase...Ch. 31 - When an L-R-C series circuit is connected across a...Ch. 31 - Prob. 31.11DQCh. 31 - A light bulb and a parallel-plate capacitor with...Ch. 31 - A coil of wire wrapped on a hollow tube and a...Ch. 31 - A circuit consists of a light bulb, a capacitor,...Ch. 31 - A circuit consists of a light bulb, a capacitor,...Ch. 31 - Prob. 31.16DQCh. 31 - An ideal transformer has N1, windings in the...Ch. 31 - An inductor, a capacitor, and a resistor are all...Ch. 31 - You want to double the resonance angular frequency...Ch. 31 - Prob. 31.1ECh. 31 - A sinusoidal current i = I cos t has an rms value...Ch. 31 - The voltage across the terminals of an ac power...Ch. 31 - A capacitor is connected across an ac source that...Ch. 31 - An inductor with L = 9.50 mH is connected across...Ch. 31 - A capacitance C and an inductance L are operated...Ch. 31 - Kitchen Capacitance. The wiring for a refrigerator...Ch. 31 - (a) Compute the reactance of a 0.450-H inductor at...Ch. 31 - (a) What is the reactance of a 3.00-H inductor at...Ch. 31 - A Radio Inductor. You want the current amplitude...Ch. 31 - A 0.180-H inductor is connected in series with a...Ch. 31 - A 250- resistor is connected in series with a...Ch. 31 - A 150- resistor is connected in series with a...Ch. 31 - You have a 200- resistor, a 0.400-H inductor, and...Ch. 31 - The resistor, inductor, capacitor, and voltage...Ch. 31 - Prob. 31.16ECh. 31 - In an L-R-C series circuit, the rms voltage across...Ch. 31 - A resistor with R = 300 and an inductor are...Ch. 31 - The power of a certain CD player operating at 120...Ch. 31 - In an L-R-C series circuit, the components have...Ch. 31 - (a) Show that for an L-R-C series circuit the...Ch. 31 - (a) Use the results of part (a) of Exercise 31.21...Ch. 31 - An L-R-C series circuit with L = 0.120 H, R = 240...Ch. 31 - An L-R-C series circuit is connected to a 120-Hz...Ch. 31 - A series ac circuit contains a 250- resistor, a...Ch. 31 - In an L-R-C series circuit the source is operated...Ch. 31 - Analyzing an L-R-C Circuit. You have a 200-...Ch. 31 - An L-R-C series circuit is constructed using a...Ch. 31 - In an L-R-C series circuit, R = 300, L = 0.400 H,...Ch. 31 - An L-R-C series circuit consists of a source with...Ch. 31 - In an L-R-C series circuit, R = 150 , L = 0.750 H,...Ch. 31 - In an L-R-C series circuit, R = 400 , L = 0.350 H,...Ch. 31 - In an L-R-C series circuit, L = 0.280 H and C =...Ch. 31 - Section 31.6 Transformers 31.34Off to Europe! You...Ch. 31 - A Step-Down Transformer. A transformer connected...Ch. 31 - A Step-Up Transformer. A transformer connected to...Ch. 31 - A coil has a resistance of 48.0 . At a frequency...Ch. 31 - Prob. 31.38PCh. 31 - An L-R-C series circuit has C = 4.80 F, L = 0.520...Ch. 31 - Five infinite-impedance voltmeters, calibrated to...Ch. 31 - CP A parallel-plate capacitor having square plates...Ch. 31 - Prob. 31.42PCh. 31 - A series circuit has an impedance of 60.0 and a...Ch. 31 - A large electromagnetic coil is connected to a...Ch. 31 - In an L-R-C series circuit, R = 300 , XC = 300 ,...Ch. 31 - At a frequency 1, the reactance of a certain...Ch. 31 - A High-Pass Filter. One application of L-R-C...Ch. 31 - A Low-Pass Filter. Figure P31.48 shows a low-pass...Ch. 31 - An L-R-C series circuit is connected to an ac...Ch. 31 - An L-R-C series circuit is connected to an ac...Ch. 31 - In an L-R-C series circuit the magnitude of the...Ch. 31 - In an L-R-C series circuit, the phase angle is...Ch. 31 - An L-R-C series circuit has R = 500 . L = 2.00 H,...Ch. 31 - The L-R-C Parallel Circuit. A resistor, an...Ch. 31 - The impedance of an L-R-C parallel circuit was...Ch. 31 - A 400- resistor and a 6.00-F capacitor are...Ch. 31 - An L-R-C series circuit consists of a 2.50-F...Ch. 31 - An L-R-C series circuit has R = 60.0 , L = 0.800...Ch. 31 - In an L-R-C series circuit, the source has a...Ch. 31 - In an L-R-C series ac circuit, the source has a...Ch. 31 - A resistance R, capacitance C, and inductance L...Ch. 31 - The Resonance Width. Consider an L-R-C series...Ch. 31 - An L-R-C series circuit draws 220 W from a 120-V...Ch. 31 - DATA A coworker of yours was making measurements...Ch. 31 - DATA You are analyzing an ac circuit that contains...Ch. 31 - DATA You are given this table of data recorded for...Ch. 31 - CALC In an L-R-C series circuit the current is...Ch. 31 - CALC (a) At what angular frequency is the voltage...Ch. 31 - Prob. 31.69PPCh. 31 - If the electrode oscillates between two points 20...Ch. 31 - The signal from the oscillating electrode is fed...Ch. 31 - If the frequency at which the electrode is...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Given the polar character of water molecules, explain how ions in the air form nucleation centers for rain drop...
College Physics
The speed of the person sitting on the chair relative to the chair and relative to Earth.
Conceptual Physics (12th Edition)
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective
59. (I) An 85-kg football player traveling 5.0 m/s is stopped in 1.0 s by a tackier. (a) What is the original k...
Physics: Principles with Applications
Express the unit vectors in terms of (that is, derive Eq. 1.64). Check your answers several ways Also work o...
Introduction to Electrodynamics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A capacitor with square plates, each with an area of 37.0 cm2 and plate separation d = 2.44 mm, is being charged by a 555-mA current. (a) What is the change in the electric flux between the plates as a function of time? (Use the following as necessary: t. Do not use other variables, substitute numeric values. Assume that dΦE/dt is in V · m/s and t is in seconds. Do not include units in your answer. Enter the magnitude.)arrow_forwardA capacitor with square plates, each with an area of 34.0 cm2 and plate separation d = 2.64 mm, is being charged by a 215-mA current. (a) What is the change in the electric flux between the plates as a function of time? (Use the following as necessary: t. Do not use other variables, substitute numeric values. Assume that dΦE/dt is in V · m/s and t is in seconds. Do not include units in your answer. Enter the magnitude.) dΦE dt = (b) What is the magnitude of the displacement current between the capacitor's plates?arrow_forwardAn air cylindrical capacitor with a dc voltage V= 200 V applied across it is being submerged vertically into a vessel filled with water at a velocity v = 5.0 mm/s. The electrodes of the capacitor are separated by a distance d = 2.0 mm, the mean curvature radius of the electrodes is equal to r = 50 mm. Find the current flowing in this case along lead wires, if d <r.arrow_forward
- wR -27/W b. The power (P) supplied to an electric circuit is given by P = 2 dt. If %3D i = 63 * I sin(wt), I is the current, w is the angular frequency and R is the resistance, evaluate P.arrow_forwardQuestion 1: By measuring the currents and times and then draw the current vs time graph using the measurement at the lab for ɛ =8 V, R=1M Q and C=1µF. What is the current at t=2.5 s? (20p) e RC = Ioe¯RC %3| R values obtained after the experiment: Io-8µA Approximate time until current becomes zero= 5.7 sarrow_forwardBy measuring the currents and times and then draw the current vs time graph using the measurementat the lab for ε =8 V, R=1M Ω and C=1μF. What is the current at t=2.5 s? f values obtained after the experiment:I0=8μAApproximate time until current becomes zero= 5.7 sarrow_forward
- Problem 5: A circular capacitor has parallel plates with radius R=2.01 cm with a d=0.158 cm gap between them. The capacitor is being charged by a 21.5 A current.arrow_forwardAn electrical cable of length l=12m consists of a copper wire of diameter D=0,3 cm, and resistivity p= 1,7. 10^(-8) , surrounded by a cylindrical layer of rubber insulation, thickness s= 0,10 cm. A potential difference of 6 volts is applied to the ends of this cable. I) Find the intensity of electric current in the cable.arrow_forwardPPROBLEM 3. An electromotive force, E(t), is applied to an RC circuit in which the capacitance is 100 µF and resistance 0.2 kn. S400 V 0 30 find the current i(t) if i(0) = 0. What is the current as t → o? Given E(t) = (50 Varrow_forward
- When a capacitor is being charged, the instantaneous current i at time ! is given by: i = (10-e C ), where C and R are constants. Given C =7×10*F, and R= 0.3×10ʻ2. Calculate: (a) The instantaneous current when t= 2.5seconds (b) The time for the instantaneous current to fall to 5.0Amperes (c) On a graph paper, sketch a curve of current against time from t =0 to t = 6.0secondsarrow_forward(a) In the figure what value must R have if the current in the circuit is to be 1.3 mA? Take ₁ = 2.7 V, 8₂ = 5.3 V, and r₁= r₂ = 3.9 Q. (b) What is the rate at which thermal energy appears in R? ww www. (b) Number 12₂ (a) Number 1992.2 i 2.6 Units Units Ω W <arrow_forwardA capacitor, C'is connected across an emf given by: v(t) = Vo sin(wt) Write an expression for the current through the capacitor. I(t) =arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
What Are Electromagnetic Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=ftyxZBxBexI;License: Standard YouTube License, CC-BY