Review. Alter removing one string while restringing his acoustic guitar, a student is distracted by a video game. His experimentalist roommate notices his inattention and attaches one end of the string, of linear density μ = 3.00 × 10 -3 kg/m. to a rigid support. The other end passes over a pulley, a distance ℓ = 64.0 cm from the fixed end, and an object of mass m = 27.2 kg is attached to the hanging end of the string. The roommate places a magnet across the string as shown in Figure P31.35. The magnet does not touch the string, but produces a uniform field of 4.50 mT over a 2.00-cm length of the string and negligible field elsewhere. Strumming the string sets it vibrating vertically at its fundamental (lowest) frequency. The section of the string in the magnetic field moves perpendicular to the field with a uniform amplitude of 1.50 cm. Find (a) the frequency and (b) the amplitude of the emf induced between the ends of the string.
Review. Alter removing one string while restringing his acoustic guitar, a student is distracted by a video game. His experimentalist roommate notices his inattention and attaches one end of the string, of linear density μ = 3.00 × 10 -3 kg/m. to a rigid support. The other end passes over a pulley, a distance ℓ = 64.0 cm from the fixed end, and an object of mass m = 27.2 kg is attached to the hanging end of the string. The roommate places a magnet across the string as shown in Figure P31.35. The magnet does not touch the string, but produces a uniform field of 4.50 mT over a 2.00-cm length of the string and negligible field elsewhere. Strumming the string sets it vibrating vertically at its fundamental (lowest) frequency. The section of the string in the magnetic field moves perpendicular to the field with a uniform amplitude of 1.50 cm. Find (a) the frequency and (b) the amplitude of the emf induced between the ends of the string.
Solution Summary: The author calculates the frequency of the emf induced between the ends of a string.
Review. Alter removing one string while restringing his acoustic guitar, a student is distracted by a video game. His experimentalist roommate notices his inattention and attaches one end of the string, of linear density μ = 3.00 × 10-3 kg/m. to a rigid support. The other end passes over a pulley, a distance ℓ = 64.0 cm from the fixed end, and an object of mass m = 27.2 kg is attached to the hanging end of the string. The roommate places a magnet across the string as shown in Figure P31.35. The magnet does not touch the string, but produces a uniform field of 4.50 mT over a 2.00-cm length of the string and negligible field elsewhere. Strumming the string sets it vibrating vertically at its fundamental (lowest) frequency. The section of the string in the magnetic field moves perpendicular to the field with a uniform amplitude of 1.50 cm. Find (a) the frequency and (b) the amplitude of the emf induced between the ends of the string.
Problem 1. (20 pts)
The third and fourth stages of a rocket are coastin
in space with a velocity of 18 000 km/h when a smal
explosive charge between the stages separate
them. Immediately after separation the fourth stag
has increased its velocity to v4 = 18 060 km/h. Wha
is the corresponding velocity v3 of the third stage
At separation the third and fourth stages hav
masses of 400 and 200 kg, respectively.
3rd stage
4th stage
Many experts giving wrong answer of this question.
please attempt when you 100% sure .
Otherwise i will give unhelpful.
Determine the shear and moment diagram for the beam shown in Fig.1.
A
2 N/m
10 N
8 N
6 m
B
4m
Fig.1
40 Nm
Steps:
1) Determine the reactions at the fixed support (RA and MA) (illustrated
in Fig 1.1)
2) Draw the free body diagram on the first imaginary cut (fig. 1.2), and
determine V and M.
3) Draw the free body diagram on the second imaginary cut (fig. 1.3),
and determine V and M.
4) Draw the shear and moment diagram
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.