Linear Algebra with Applications (2-Download)
5th Edition
ISBN: 9780321796974
Author: Otto Bretscher
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3.1, Problem 29E
Give an example of a function whose image is the unitsphere
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Assume {u1, U2, u3, u4} does not span R³.
Select the best statement.
A. {u1, U2, u3} spans R³ if u̸4 is a linear combination of other vectors in the set.
B. We do not have sufficient information to determine whether {u₁, u2, u3} spans R³.
C. {U1, U2, u3} spans R³ if u̸4 is a scalar multiple of another vector in the set.
D. {u1, U2, u3} cannot span R³.
E. {U1, U2, u3} spans R³ if u̸4 is the zero vector.
F. none of the above
Select the best statement.
A. If a set of vectors includes the zero vector 0, then the set of vectors can span R^ as long as the other vectors
are distinct.
n
B. If a set of vectors includes the zero vector 0, then the set of vectors spans R precisely when the set with 0
excluded spans Rª.
○ C. If a set of vectors includes the zero vector 0, then the set of vectors can span Rn as long as it contains n
vectors.
○ D. If a set of vectors includes the zero vector 0, then there is no reasonable way to determine if the set of vectors
spans Rn.
E. If a set of vectors includes the zero vector 0, then the set of vectors cannot span Rn.
F. none of the above
Which of the following sets of vectors are linearly independent? (Check the boxes for linearly independent sets.)
☐ A.
{
7
4
3
13
-9
8
-17
7
☐ B.
0
-8
3
☐ C.
0
☐
D.
-5
☐ E.
3
☐ F.
4
TH
Chapter 3 Solutions
Linear Algebra with Applications (2-Download)
Ch. 3.1 - For each matrix A in Exercises 1 through 13, find...Ch. 3.1 - For each matrix A in Exercises 1 through 13, find...Ch. 3.1 - For each matrix A in Exercises 1 through 13, find...Ch. 3.1 - For each matrix A in Exercises 1 through 13, find...Ch. 3.1 - For each matrix A in Exercises 1 through 13, find...Ch. 3.1 - For each matrix A in Exercises 1 through 13, find...Ch. 3.1 - For each matrix A in Exercises 1 through 13, find...Ch. 3.1 - For each matrix A in Exercises 1 through 13, find...Ch. 3.1 - For each matrix A in Exercises 1 through 13, find...Ch. 3.1 - For each matrix A in Exercises 1 through 13, find...
Ch. 3.1 - For each matrix A in Exercises 1 through 13, find...Ch. 3.1 - For each matrix A in Exercises 1 through 13, find...Ch. 3.1 - For each matrix A in Exercises 1 through 13, find...Ch. 3.1 - For each matrix A in Exercises 14 through 16, find...Ch. 3.1 - For each matrix A in Exercises 14 through 16, find...Ch. 3.1 - For each matrix A in Exercises 14 through 16, find...Ch. 3.1 - For each matrix A in Exercises 17 through 22,...Ch. 3.1 - For each matrix A in Exercises 17 through 22,...Ch. 3.1 - For each matrix A in Exercises 17 through 22,...Ch. 3.1 - For each matrix A in Exercises 17 through 22,...Ch. 3.1 - For each matrix A in Exercises 17 through 22,...Ch. 3.1 - For each matrix A in Exercises 17 through 22,...Ch. 3.1 - Describe the images and kernels of the...Ch. 3.1 - Prob. 24ECh. 3.1 - Describe the images and kernels of the...Ch. 3.1 - What is the image of a function f from to given...Ch. 3.1 - Give an example of a noninvertible function f from...Ch. 3.1 - Prob. 28ECh. 3.1 - Give an example of a function whose image is the...Ch. 3.1 - Give an example of a matrix A such that im(A)...Ch. 3.1 - Give an example of a matrix A such that im(A) is...Ch. 3.1 - Give an example of a linear transformation whose...Ch. 3.1 - Give an example of a linear transformation whose...Ch. 3.1 - Give an example of a linear transformation whose...Ch. 3.1 - Consider a nonzero vector v in 3 . Arguing...Ch. 3.1 - Prob. 36ECh. 3.1 - For the matrix A=[010001000] , describe the images...Ch. 3.1 - Consider a square matrix A. a. What is the...Ch. 3.1 - Consider an np matrix A and a pm matrix B. a. What...Ch. 3.1 - Consider an np matrix A and a pm matrix B. If...Ch. 3.1 - Consider the matrix A=[0.360.480.480.64] . a....Ch. 3.1 - Express the image of the matrix...Ch. 3.1 - Prob. 43ECh. 3.1 - Consider a matrix A, and let B=rref(A) . a. Is...Ch. 3.1 - Prob. 45ECh. 3.1 - Prob. 46ECh. 3.1 - Prob. 47ECh. 3.1 - Consider a 22 matrix A with A2=A . a. If w is in...Ch. 3.1 - Verify that the kernel of a linear transformation...Ch. 3.1 - Consider a square matrix A with ker(A2)=ker(A3) ....Ch. 3.1 - Consider an np matrix A and a pm in matrix B...Ch. 3.1 - Prob. 52ECh. 3.1 - In Exercises 53 and 54, we will work with the...Ch. 3.1 - See Exercise 53 for some background. When...Ch. 3.2 - Which of the sets W in Exercises 1 through 3 are...Ch. 3.2 - Which of the sets W in Exercises 1 through 3 are...Ch. 3.2 - Which of the sets W in Exercises 1 through 3 are...Ch. 3.2 - Consider the vectors v1,v2,...,vm in n . Is span...Ch. 3.2 - Give a geometrical description of all subspaces of...Ch. 3.2 - Consider two subspaces V and W of n . a. Is the...Ch. 3.2 - Consider a nonempty subset W of n that is closed...Ch. 3.2 - Find a nontrivial relation among the following...Ch. 3.2 - Consider the vectors v1,v2,...,vm in n , with vm=0...Ch. 3.2 - In Exercises 10 through 20, use paper and pencil...Ch. 3.2 - In Exercises 10 through 20, use paper and pencil...Ch. 3.2 - In Exercises 10 through 20, use paper and pencil...Ch. 3.2 - In Exercises 10 through 20, use paper and pencil...Ch. 3.2 - In Exercises 10 through 20, use paper and pencil...Ch. 3.2 - In Exercises 10 through 20, use paper and pencil...Ch. 3.2 - In Exercises 10 through 20, use paper and pencil...Ch. 3.2 - In Exercises 10 through 20, use paper and pencil...Ch. 3.2 - In Exercises 10 through 20, use paper and pencil...Ch. 3.2 - In Exercises 10 through 20, use paper and pencil...Ch. 3.2 - In Exercises 10 through 20, use paper and pencil...Ch. 3.2 - In Exercises 21 through 26, find a redundant...Ch. 3.2 - In Exercises 21 through 26, find a redundant...Ch. 3.2 - In Exercises 21 through 26, find a redundant...Ch. 3.2 - In Exercises 21 through 26, find a redundant...Ch. 3.2 - In Exercises 21 through 26, find a redundant...Ch. 3.2 - In Exercises 21 through 26, find a redundant...Ch. 3.2 - Find a basis of the image of the matrices in...Ch. 3.2 - Find a basis of the image of the matrices in...Ch. 3.2 - Find a basis of the image of the matrices in...Ch. 3.2 - Find a basis of the image of the matrices in...Ch. 3.2 - Find a basis of the image of the matrices in...Ch. 3.2 - Find a basis of the image of the matrices in...Ch. 3.2 - Prob. 33ECh. 3.2 - Consider the 54 matrix A=[ v 1 v 2 v 3 v 4] ....Ch. 3.2 - Prob. 35ECh. 3.2 - Consider a linear transformation T from n to p...Ch. 3.2 - Consider a linear transformation T from n to p...Ch. 3.2 - Prob. 38ECh. 3.2 - Consider some linearly independent vectors...Ch. 3.2 - Consider an np matrix A and a pm matrix B. Weare...Ch. 3.2 - Prob. 41ECh. 3.2 - Consider some perpendicular unit vectors...Ch. 3.2 - Consider three linearly independent vectors...Ch. 3.2 - Consider linearly independent vectors v1,v2,...,vm...Ch. 3.2 - Prob. 45ECh. 3.2 - Find a basis of the kernel of the matrix...Ch. 3.2 - Consider three linearly independent vectors...Ch. 3.2 - Express the plane V in 3 with equation...Ch. 3.2 - Express the line L in 3 spanned by the vector...Ch. 3.2 - Consider two subspaces V and W of n . Let V+W...Ch. 3.2 - Prob. 51ECh. 3.2 - Prob. 52ECh. 3.2 - Consider a subspace V of n . We define the...Ch. 3.2 - Consider the line L spanned by [123] in 3 . Find a...Ch. 3.2 - Consider the subspace L of 5 spanned by the...Ch. 3.2 - Prob. 56ECh. 3.2 - Consider the matrix...Ch. 3.2 - Prob. 58ECh. 3.3 - In Exercises 1 through 20, find the redundant...Ch. 3.3 - In Exercises 1 through 20, find the redundant...Ch. 3.3 - In Exercises 1 through 20, find the redundant...Ch. 3.3 - In Exercises 1 through 20, find the redundant...Ch. 3.3 - In Exercises 1 through 20, find the redundant...Ch. 3.3 - In Exercises 1 through 20, find the redundant...Ch. 3.3 - In Exercises 1 through 20, find the redundant...Ch. 3.3 - In Exercises 1 through 20, find the redundant...Ch. 3.3 - In Exercises 1 through 20, find the redundant...Ch. 3.3 - In Exercises 1 through 20, find the redundant...Ch. 3.3 - In Exercises 1 through 20, find the redundant...Ch. 3.3 - In Exercises 1 through 20, find the redundant...Ch. 3.3 - In Exercises 1 through 20, find the redundant...Ch. 3.3 - In Exercises 1 through 20, find the redundant...Ch. 3.3 - In Exercises 1 through 20, find the redundant...Ch. 3.3 - In Exercises 1 through 20, find the redundant...Ch. 3.3 - In Exercises 1 through 20, find the redundant...Ch. 3.3 - In Exercises 1 through 20, find the redundant...Ch. 3.3 - In Exercises 1 through 20, find the redundant...Ch. 3.3 - In Exercises 1 through 20, find the redundant...Ch. 3.3 - In Exercises 21 through 25, find the reduced...Ch. 3.3 - In Exercises 21 through 25, find the reduced...Ch. 3.3 - In Exercises 21 through 25, find the reduced...Ch. 3.3 - In Exercises 21 through 25, find the reduced...Ch. 3.3 - In Exercises 21 through 25, find the reduced...Ch. 3.3 - Consider the matrices C=[ 1 1 1 1 0 0 1 1 1],H=[ 1...Ch. 3.3 - Determine whether the following vectors form a...Ch. 3.3 - For which value(s) of the constant k do the...Ch. 3.3 - Find a basis of the subspace of 3 defined by...Ch. 3.3 - Find a basis of the subspace of 4 defined by the...Ch. 3.3 - Let V be the subspace of 4 defined by the equation...Ch. 3.3 - Find a basis of the subspace of 4 that consists of...Ch. 3.3 - A subspace V of n is called a hyperplane if V...Ch. 3.3 - Consider a subspace V in m that is defined by...Ch. 3.3 - Consider a nonzero vector v in n . What is the...Ch. 3.3 - Can you find a 33 matrix A such that im(A)=ker(A)...Ch. 3.3 - Give an example of a 45 matrix A with dim(kerA)=3...Ch. 3.3 - a. Consider a linear transformation T from 5 to 3...Ch. 3.3 - Prob. 39ECh. 3.3 - Prob. 40ECh. 3.3 - Prob. 41ECh. 3.3 - In Exercises 40 through 43, consider the problem...Ch. 3.3 - Prob. 43ECh. 3.3 - For Exercises 44 through 61, consider the problem...Ch. 3.3 - Prob. 45ECh. 3.3 - Prob. 46ECh. 3.3 - Prob. 47ECh. 3.3 - Prob. 48ECh. 3.3 - Prob. 49ECh. 3.3 - Prob. 50ECh. 3.3 - Prob. 51ECh. 3.3 - Prob. 52ECh. 3.3 - Prob. 53ECh. 3.3 - For Exercises 44 through 61, consider the problem...Ch. 3.3 - Prob. 55ECh. 3.3 - Prob. 56ECh. 3.3 - Prob. 57ECh. 3.3 - Prob. 58ECh. 3.3 - Prob. 59ECh. 3.3 - Prob. 60ECh. 3.3 - Find all points P in the plane such that you can...Ch. 3.3 - Prob. 62ECh. 3.3 - Consider two subspaces V and W of n , where Vis...Ch. 3.3 - Consider a subspace V of n with dim(V)=n . Explain...Ch. 3.3 - Consider two subspaces V and W of n , with VW={0}...Ch. 3.3 - Two subspaces V and W of n arc called...Ch. 3.3 - Consider linearly independent vectors v1,v2,...vp...Ch. 3.3 - Use Exercise 67 to construct a basis of 4 that...Ch. 3.3 - Consider two subspaces V and W of n . Show that...Ch. 3.3 - Use Exercise 69 to answer the following question:...Ch. 3.3 - Prob. 71ECh. 3.3 - Prob. 72ECh. 3.3 - Prob. 73ECh. 3.3 - Prob. 74ECh. 3.3 - Prob. 75ECh. 3.3 - Consider the matrix A=[1221] . Find scalars...Ch. 3.3 - Prob. 77ECh. 3.3 - An nn matrix A is called nilpotent if Am=0 for...Ch. 3.3 - Consider a nilpotent nn matrix A. Use the...Ch. 3.3 - Prob. 80ECh. 3.3 - Prob. 81ECh. 3.3 - If a 33 matrix A represents the projection onto a...Ch. 3.3 - Consider a 42 matrix A and a 25 matrix B. a. What...Ch. 3.3 - Prob. 84ECh. 3.3 - Prob. 85ECh. 3.3 - Prob. 86ECh. 3.3 - Prob. 87ECh. 3.3 - Prob. 88ECh. 3.3 - Prob. 89ECh. 3.3 - Prob. 90ECh. 3.4 - In Exercises 1 through 18, determine whether the...Ch. 3.4 - In Exercises 1 through 18, determine whether the...Ch. 3.4 - In Exercises 1 through 18, determine whether the...Ch. 3.4 - In Exercises 1 through 18, determine whether the...Ch. 3.4 - In Exercises 1 through 18, determine whether the...Ch. 3.4 - In Exercises 1 through 18, determine whether the...Ch. 3.4 - In Exercises 1 through 18, determine whether the...Ch. 3.4 - In Exercises 1 through 18, determine whether the...Ch. 3.4 - In Exercises 1 through 18, determine whether the...Ch. 3.4 - In Exercises 1 through 18, determine whether the...Ch. 3.4 - In Exercises 1 through 18, determine whether the...Ch. 3.4 - In Exercises 1 through 18, determine whether the...Ch. 3.4 - In Exercises 1 through 18, determine whether the...Ch. 3.4 - In Exercises 1 through 18, determine whether the...Ch. 3.4 - In Exercises 1 through 18, determine whether the...Ch. 3.4 - In Exercises 1 through 18, determine whether the...Ch. 3.4 - In Exercises 1 through 18, determine whether the...Ch. 3.4 - In Exercises 1 through 18, determine whether the...Ch. 3.4 - In Exercises 19 through 24, find the matrix B of...Ch. 3.4 - In Exercises 19 through 24, find the matrix B of...Ch. 3.4 - In Exercises 19 through 24, find the matrix B of...Ch. 3.4 - In Exercises 19 through 24, find the matrix B of...Ch. 3.4 - In Exercises 19 through 24, find the matrix B of...Ch. 3.4 - In Exercises 19 through 24, find the matrix B of...Ch. 3.4 - In Exercises 25 through 30, find the matrix B of...Ch. 3.4 - In Exercises 25 through 30, find the matrix B of...Ch. 3.4 - In Exercises 25 through 30, find the matrix B of...Ch. 3.4 - In Exercises 25 through 30, find the matrix B of...Ch. 3.4 - In Exercises 25 through 30, find the matrix B of...Ch. 3.4 - In Exercises 25 through 30, find the matrix B of...Ch. 3.4 - Let =(v1,v2,v3)be any basis of 3consisting of...Ch. 3.4 - Let =(v1,v2,v3)be any basis of 3consisting of...Ch. 3.4 - Let =(v1,v2,v3)be any basis of 3consisting of...Ch. 3.4 - Let =(v1,v2,v3)be any basis of 3consisting of...Ch. 3.4 - Let =(v1,v2,v3)be any basis of 3consisting of...Ch. 3.4 - Let =(v1,v2,v3)be any basis of 3consisting of...Ch. 3.4 - In Exercises 37 through 42, find a basis of n such...Ch. 3.4 - In Exercises 37 through 42, find a basis of n such...Ch. 3.4 - In Exercises 37 through 42, find a basis of n such...Ch. 3.4 - Prob. 40ECh. 3.4 - In Exercises 37 through 42, find a basis of n such...Ch. 3.4 - In Exercises 37 through 42, find a basis of n such...Ch. 3.4 - Consider the plane x1+2x2+x3=0 with basis...Ch. 3.4 - Consider the plane 2x13x2+4x3=0 with basis...Ch. 3.4 - Consider the plane 2x13x2+4x3=0. Find a basis of...Ch. 3.4 - Consider the plane x1+2x2+x3=0. Find a basis of...Ch. 3.4 - Consider a linear transformation T from 2 to 2...Ch. 3.4 - In the accompanying figure, sketch the vector x...Ch. 3.4 - Prob. 49ECh. 3.4 - Given a hexagonal tiling of the plane, such as you...Ch. 3.4 - Prob. 51ECh. 3.4 - If is a basis of n , is the transformation T from...Ch. 3.4 - Consider the basis of 2 consisting of the vectors...Ch. 3.4 - Let be the basis of n consisting of the vectors...Ch. 3.4 - Consider the basis of 2 consisting of the vectors...Ch. 3.4 - Find a basis of 2 such that andCh. 3.4 - Show that if a 33 matrix A represents the...Ch. 3.4 - Consider a 33 matrix A and a vector v in 3...Ch. 3.4 - Is matrix [2003] similar to matrix [2113] ?Ch. 3.4 - Is matrix [1001] similar to matrix [0110] ?Ch. 3.4 - Find a basis of 2 such that the matrix of the...Ch. 3.4 - Find a basis of 2 such that the matrix of the...Ch. 3.4 - Prob. 63ECh. 3.4 - Is matrix [abcd] similar to matrix [acbd] for all...Ch. 3.4 - Prove parts (a) and (b) of Theorem 3.4.6.Ch. 3.4 - Consider a matrix A of the form A=[abba] , where...Ch. 3.4 - If c0 ,find the matrix of the linear...Ch. 3.4 - Prob. 68ECh. 3.4 - If A is a 22 matrix such that A[12]=[36] and...Ch. 3.4 - Is there a basis of 2 such that matrix B of...Ch. 3.4 - Suppose that matrix A is similar to B, with B=S1AS...Ch. 3.4 - If A is similar to B, what is the relationship...Ch. 3.4 - Prob. 73ECh. 3.4 - Consider the regular tetrahedron in the...Ch. 3.4 - Prob. 75ECh. 3.4 - Prob. 76ECh. 3.4 - Prob. 77ECh. 3.4 - This problem refers to Leontief’s input—output...Ch. 3.4 - Prob. 79ECh. 3.4 - Prob. 80ECh. 3.4 - Consider the linear transformation...Ch. 3.4 - Prob. 82ECh. 3 - If v1,v2,...,vn and w1,w2,...,wm are any twobases...Ch. 3 - If A is a 56 matrix of rank 4, then the nullity of...Ch. 3 - The image of a 34 matrix is a subspace of 4 .Ch. 3 - The span of vectors v1,v2,...,vn consists of all...Ch. 3 - Prob. 5ECh. 3 - Prob. 6ECh. 3 - The kernel of any invertible matrix consists of...Ch. 3 - The identity matrix In is similar to all...Ch. 3 - Prob. 9ECh. 3 - The column vectors of a 54 matrix must be...Ch. 3 - Prob. 11ECh. 3 - Prob. 12ECh. 3 - Prob. 13ECh. 3 - Prob. 14ECh. 3 - Prob. 15ECh. 3 - Vectors [100],[210],[321] form a basis of 3 .Ch. 3 - Prob. 17ECh. 3 - Prob. 18ECh. 3 - Prob. 19ECh. 3 - Prob. 20ECh. 3 - Prob. 21ECh. 3 - Prob. 22ECh. 3 - Prob. 23ECh. 3 - Prob. 24ECh. 3 - Prob. 25ECh. 3 - If a 22 matrix P represents the orthogonal...Ch. 3 - Prob. 27ECh. 3 - Prob. 28ECh. 3 - Prob. 29ECh. 3 - Prob. 30ECh. 3 - Prob. 31ECh. 3 - Prob. 32ECh. 3 - Prob. 33ECh. 3 - Prob. 34ECh. 3 - Prob. 35ECh. 3 - If A and B are nn matrices, and vector v is in...Ch. 3 - Prob. 37ECh. 3 - Prob. 38ECh. 3 - Prob. 39ECh. 3 - Prob. 40ECh. 3 - Prob. 41ECh. 3 - If two nn matrices A and B have the same rank,...Ch. 3 - Prob. 43ECh. 3 - If A2=0 for a 1010 matrix A, then the inequality...Ch. 3 - Prob. 45ECh. 3 - Prob. 46ECh. 3 - Prob. 47ECh. 3 - Prob. 48ECh. 3 - Prob. 49ECh. 3 - Prob. 50ECh. 3 - Prob. 51ECh. 3 - Prob. 52ECh. 3 - Prob. 53E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- 3 and = 5 3 ---8--8--8 Let = 3 U2 = 1 Select all of the vectors that are in the span of {u₁, u2, u3}. (Check every statement that is correct.) 3 ☐ A. The vector 3 is in the span. -1 3 ☐ B. The vector -5 75°1 is in the span. ГОЛ ☐ C. The vector 0 is in the span. 3 -4 is in the span. OD. The vector 0 3 ☐ E. All vectors in R³ are in the span. 3 F. The vector 9 -4 5 3 is in the span. 0 ☐ G. We cannot tell which vectors are i the span.arrow_forward(20 p) 1. Find a particular solution satisfying the given initial conditions for the third-order homogeneous linear equation given below. (See Section 5.2 in your textbook if you need a review of the subject.) y(3)+2y"-y-2y = 0; y(0) = 1, y'(0) = 2, y"(0) = 0; y₁ = e*, y2 = e¯x, y3 = e−2x (20 p) 2. Find a particular solution satisfying the given initial conditions for the second-order nonhomogeneous linear equation given below. (See Section 5.2 in your textbook if you need a review of the subject.) y"-2y-3y = 6; y(0) = 3, y'(0) = 11 yc = c₁ex + c2e³x; yp = −2 (60 p) 3. Find the general, and if possible, particular solutions of the linear systems of differential equations given below using the eigenvalue-eigenvector method. (See Section 7.3 in your textbook if you need a review of the subject.) = a) x 4x1 + x2, x2 = 6x1-x2 b) x=6x17x2, x2 = x1-2x2 c) x = 9x1+5x2, x2 = −6x1-2x2; x1(0) = 1, x2(0)=0arrow_forwardFind the perimeter and areaarrow_forward
- Assume {u1, U2, us} spans R³. Select the best statement. A. {U1, U2, us, u4} spans R³ unless u is the zero vector. B. {U1, U2, us, u4} always spans R³. C. {U1, U2, us, u4} spans R³ unless u is a scalar multiple of another vector in the set. D. We do not have sufficient information to determine if {u₁, u2, 43, 114} spans R³. OE. {U1, U2, 3, 4} never spans R³. F. none of the abovearrow_forwardAssume {u1, U2, 13, 14} spans R³. Select the best statement. A. {U1, U2, u3} never spans R³ since it is a proper subset of a spanning set. B. {U1, U2, u3} spans R³ unless one of the vectors is the zero vector. C. {u1, U2, us} spans R³ unless one of the vectors is a scalar multiple of another vector in the set. D. {U1, U2, us} always spans R³. E. {U1, U2, u3} may, but does not have to, span R³. F. none of the abovearrow_forwardLet H = span {u, v}. For each of the following sets of vectors determine whether H is a line or a plane. Select an Answer u = 3 1. -10 8-8 -2 ,v= 5 Select an Answer -2 u = 3 4 2. + 9 ,v= 6arrow_forward
- 3. Let M = (a) - (b) 2 −1 1 -1 2 7 4 -22 Find a basis for Col(M). Find a basis for Null(M).arrow_forwardSchoology X 1. IXL-Write a system of X Project Check #5 | Schx Thomas Edison essay, x Untitled presentation ixl.com/math/algebra-1/write-a-system-of-equations-given-a-graph d.net bookmarks Play Gimkit! - Enter... Imported Imported (1) Thomas Edison Inv... ◄›) What system of equations does the graph show? -8 -6 -4 -2 y 8 LO 6 4 2 -2 -4 -6 -8. 2 4 6 8 Write the equations in slope-intercept form. Simplify any fractions. y = y = = 00 S olo 20arrow_forwardEXERCICE 2: 6.5 points Le plan complexe est rapporté à un repère orthonormé (O, u, v ).Soit [0,[. 1/a. Résoudre dans l'équation (E₁): z2-2z+2 = 0. Ecrire les solutions sous forme exponentielle. I b. En déduire les solutions de l'équation (E2): z6-2 z³ + 2 = 0. 1-2 2/ Résoudre dans C l'équation (E): z² - 2z+1+e2i0 = 0. Ecrire les solutions sous forme exponentielle. 3/ On considère les points A, B et C d'affixes respectives: ZA = 1 + ie 10, zB = 1-ie 10 et zc = 2. a. Déterminer l'ensemble EA décrit par le point A lorsque e varie sur [0, 1. b. Calculer l'affixe du milieu K du segment [AB]. C. Déduire l'ensemble EB décrit par le point B lorsque varie sur [0,¹ [. d. Montrer que OACB est un parallelogramme. e. Donner une mesure de l'angle orienté (OA, OB) puis déterminer pour que OACB soit un carré.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning
Holt Mcdougal Larson Pre-algebra: Student Edition...
Algebra
ISBN:9780547587776
Author:HOLT MCDOUGAL
Publisher:HOLT MCDOUGAL
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Matrix Factorization - Numberphile; Author: Numberphile;https://www.youtube.com/watch?v=wTUSz-HSaBg;License: Standard YouTube License, CC-BY