
Linear Algebra with Applications (2-Download)
5th Edition
ISBN: 9780321796974
Author: Otto Bretscher
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3, Problem 44E
If
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
1) Express these large and small numbers from the Read and Study section in scientific
notation:
(a) 239,000 miles
(b) 3,800,000,000,000 sheets of paper
(c) 0.0000000000000000000000167 grams
2) Find all values for the variable x that make these equations true.
(a) 5x = 1
(b) 3x = 1/1
9
(c) 4* = 11/
4
(e) 4* = 64
(g) 10x = 1,000,000
(d) 3x=-3
(f) 2x =
=
8
(h) 10x = 0.001
(b)
4) Find an equation to fit each of the following graphs:
(a)
20
20
18
16
14
12
10
8
6
4
2
24
22
20
18
16
14
12
10
8
16
A
2
-3 -2
-1-0
2
3
4.
-1
0
1
2
3.
-2
-2
3) Which of the following are equivalent to 3? (There may be more than one that is
equivalent!)
-1
(a) (9)¯¹
3.
(b) (-3)-1
(c) (-3)
-1
(d) -(¯3)
(e) 11
3-1
(f) 3-4
Chapter 3 Solutions
Linear Algebra with Applications (2-Download)
Ch. 3.1 - For each matrix A in Exercises 1 through 13, find...Ch. 3.1 - For each matrix A in Exercises 1 through 13, find...Ch. 3.1 - For each matrix A in Exercises 1 through 13, find...Ch. 3.1 - For each matrix A in Exercises 1 through 13, find...Ch. 3.1 - For each matrix A in Exercises 1 through 13, find...Ch. 3.1 - For each matrix A in Exercises 1 through 13, find...Ch. 3.1 - For each matrix A in Exercises 1 through 13, find...Ch. 3.1 - For each matrix A in Exercises 1 through 13, find...Ch. 3.1 - For each matrix A in Exercises 1 through 13, find...Ch. 3.1 - For each matrix A in Exercises 1 through 13, find...
Ch. 3.1 - For each matrix A in Exercises 1 through 13, find...Ch. 3.1 - For each matrix A in Exercises 1 through 13, find...Ch. 3.1 - For each matrix A in Exercises 1 through 13, find...Ch. 3.1 - For each matrix A in Exercises 14 through 16, find...Ch. 3.1 - For each matrix A in Exercises 14 through 16, find...Ch. 3.1 - For each matrix A in Exercises 14 through 16, find...Ch. 3.1 - For each matrix A in Exercises 17 through 22,...Ch. 3.1 - For each matrix A in Exercises 17 through 22,...Ch. 3.1 - For each matrix A in Exercises 17 through 22,...Ch. 3.1 - For each matrix A in Exercises 17 through 22,...Ch. 3.1 - For each matrix A in Exercises 17 through 22,...Ch. 3.1 - For each matrix A in Exercises 17 through 22,...Ch. 3.1 - Describe the images and kernels of the...Ch. 3.1 - Prob. 24ECh. 3.1 - Describe the images and kernels of the...Ch. 3.1 - What is the image of a function f from to given...Ch. 3.1 - Give an example of a noninvertible function f from...Ch. 3.1 - Prob. 28ECh. 3.1 - Give an example of a function whose image is the...Ch. 3.1 - Give an example of a matrix A such that im(A)...Ch. 3.1 - Give an example of a matrix A such that im(A) is...Ch. 3.1 - Give an example of a linear transformation whose...Ch. 3.1 - Give an example of a linear transformation whose...Ch. 3.1 - Give an example of a linear transformation whose...Ch. 3.1 - Consider a nonzero vector v in 3 . Arguing...Ch. 3.1 - Prob. 36ECh. 3.1 - For the matrix A=[010001000] , describe the images...Ch. 3.1 - Consider a square matrix A. a. What is the...Ch. 3.1 - Consider an np matrix A and a pm matrix B. a. What...Ch. 3.1 - Consider an np matrix A and a pm matrix B. If...Ch. 3.1 - Consider the matrix A=[0.360.480.480.64] . a....Ch. 3.1 - Express the image of the matrix...Ch. 3.1 - Prob. 43ECh. 3.1 - Consider a matrix A, and let B=rref(A) . a. Is...Ch. 3.1 - Prob. 45ECh. 3.1 - Prob. 46ECh. 3.1 - Prob. 47ECh. 3.1 - Consider a 22 matrix A with A2=A . a. If w is in...Ch. 3.1 - Verify that the kernel of a linear transformation...Ch. 3.1 - Consider a square matrix A with ker(A2)=ker(A3) ....Ch. 3.1 - Consider an np matrix A and a pm in matrix B...Ch. 3.1 - Prob. 52ECh. 3.1 - In Exercises 53 and 54, we will work with the...Ch. 3.1 - See Exercise 53 for some background. When...Ch. 3.2 - Which of the sets W in Exercises 1 through 3 are...Ch. 3.2 - Which of the sets W in Exercises 1 through 3 are...Ch. 3.2 - Which of the sets W in Exercises 1 through 3 are...Ch. 3.2 - Consider the vectors v1,v2,...,vm in n . Is span...Ch. 3.2 - Give a geometrical description of all subspaces of...Ch. 3.2 - Consider two subspaces V and W of n . a. Is the...Ch. 3.2 - Consider a nonempty subset W of n that is closed...Ch. 3.2 - Find a nontrivial relation among the following...Ch. 3.2 - Consider the vectors v1,v2,...,vm in n , with vm=0...Ch. 3.2 - In Exercises 10 through 20, use paper and pencil...Ch. 3.2 - In Exercises 10 through 20, use paper and pencil...Ch. 3.2 - In Exercises 10 through 20, use paper and pencil...Ch. 3.2 - In Exercises 10 through 20, use paper and pencil...Ch. 3.2 - In Exercises 10 through 20, use paper and pencil...Ch. 3.2 - In Exercises 10 through 20, use paper and pencil...Ch. 3.2 - In Exercises 10 through 20, use paper and pencil...Ch. 3.2 - In Exercises 10 through 20, use paper and pencil...Ch. 3.2 - In Exercises 10 through 20, use paper and pencil...Ch. 3.2 - In Exercises 10 through 20, use paper and pencil...Ch. 3.2 - In Exercises 10 through 20, use paper and pencil...Ch. 3.2 - In Exercises 21 through 26, find a redundant...Ch. 3.2 - In Exercises 21 through 26, find a redundant...Ch. 3.2 - In Exercises 21 through 26, find a redundant...Ch. 3.2 - In Exercises 21 through 26, find a redundant...Ch. 3.2 - In Exercises 21 through 26, find a redundant...Ch. 3.2 - In Exercises 21 through 26, find a redundant...Ch. 3.2 - Find a basis of the image of the matrices in...Ch. 3.2 - Find a basis of the image of the matrices in...Ch. 3.2 - Find a basis of the image of the matrices in...Ch. 3.2 - Find a basis of the image of the matrices in...Ch. 3.2 - Find a basis of the image of the matrices in...Ch. 3.2 - Find a basis of the image of the matrices in...Ch. 3.2 - Prob. 33ECh. 3.2 - Consider the 54 matrix A=[ v 1 v 2 v 3 v 4] ....Ch. 3.2 - Prob. 35ECh. 3.2 - Consider a linear transformation T from n to p...Ch. 3.2 - Consider a linear transformation T from n to p...Ch. 3.2 - Prob. 38ECh. 3.2 - Consider some linearly independent vectors...Ch. 3.2 - Consider an np matrix A and a pm matrix B. Weare...Ch. 3.2 - Prob. 41ECh. 3.2 - Consider some perpendicular unit vectors...Ch. 3.2 - Consider three linearly independent vectors...Ch. 3.2 - Consider linearly independent vectors v1,v2,...,vm...Ch. 3.2 - Prob. 45ECh. 3.2 - Find a basis of the kernel of the matrix...Ch. 3.2 - Consider three linearly independent vectors...Ch. 3.2 - Express the plane V in 3 with equation...Ch. 3.2 - Express the line L in 3 spanned by the vector...Ch. 3.2 - Consider two subspaces V and W of n . Let V+W...Ch. 3.2 - Prob. 51ECh. 3.2 - Prob. 52ECh. 3.2 - Consider a subspace V of n . We define the...Ch. 3.2 - Consider the line L spanned by [123] in 3 . Find a...Ch. 3.2 - Consider the subspace L of 5 spanned by the...Ch. 3.2 - Prob. 56ECh. 3.2 - Consider the matrix...Ch. 3.2 - Prob. 58ECh. 3.3 - In Exercises 1 through 20, find the redundant...Ch. 3.3 - In Exercises 1 through 20, find the redundant...Ch. 3.3 - In Exercises 1 through 20, find the redundant...Ch. 3.3 - In Exercises 1 through 20, find the redundant...Ch. 3.3 - In Exercises 1 through 20, find the redundant...Ch. 3.3 - In Exercises 1 through 20, find the redundant...Ch. 3.3 - In Exercises 1 through 20, find the redundant...Ch. 3.3 - In Exercises 1 through 20, find the redundant...Ch. 3.3 - In Exercises 1 through 20, find the redundant...Ch. 3.3 - In Exercises 1 through 20, find the redundant...Ch. 3.3 - In Exercises 1 through 20, find the redundant...Ch. 3.3 - In Exercises 1 through 20, find the redundant...Ch. 3.3 - In Exercises 1 through 20, find the redundant...Ch. 3.3 - In Exercises 1 through 20, find the redundant...Ch. 3.3 - In Exercises 1 through 20, find the redundant...Ch. 3.3 - In Exercises 1 through 20, find the redundant...Ch. 3.3 - In Exercises 1 through 20, find the redundant...Ch. 3.3 - In Exercises 1 through 20, find the redundant...Ch. 3.3 - In Exercises 1 through 20, find the redundant...Ch. 3.3 - In Exercises 1 through 20, find the redundant...Ch. 3.3 - In Exercises 21 through 25, find the reduced...Ch. 3.3 - In Exercises 21 through 25, find the reduced...Ch. 3.3 - In Exercises 21 through 25, find the reduced...Ch. 3.3 - In Exercises 21 through 25, find the reduced...Ch. 3.3 - In Exercises 21 through 25, find the reduced...Ch. 3.3 - Consider the matrices C=[ 1 1 1 1 0 0 1 1 1],H=[ 1...Ch. 3.3 - Determine whether the following vectors form a...Ch. 3.3 - For which value(s) of the constant k do the...Ch. 3.3 - Find a basis of the subspace of 3 defined by...Ch. 3.3 - Find a basis of the subspace of 4 defined by the...Ch. 3.3 - Let V be the subspace of 4 defined by the equation...Ch. 3.3 - Find a basis of the subspace of 4 that consists of...Ch. 3.3 - A subspace V of n is called a hyperplane if V...Ch. 3.3 - Consider a subspace V in m that is defined by...Ch. 3.3 - Consider a nonzero vector v in n . What is the...Ch. 3.3 - Can you find a 33 matrix A such that im(A)=ker(A)...Ch. 3.3 - Give an example of a 45 matrix A with dim(kerA)=3...Ch. 3.3 - a. Consider a linear transformation T from 5 to 3...Ch. 3.3 - Prob. 39ECh. 3.3 - Prob. 40ECh. 3.3 - Prob. 41ECh. 3.3 - In Exercises 40 through 43, consider the problem...Ch. 3.3 - Prob. 43ECh. 3.3 - For Exercises 44 through 61, consider the problem...Ch. 3.3 - Prob. 45ECh. 3.3 - Prob. 46ECh. 3.3 - Prob. 47ECh. 3.3 - Prob. 48ECh. 3.3 - Prob. 49ECh. 3.3 - Prob. 50ECh. 3.3 - Prob. 51ECh. 3.3 - Prob. 52ECh. 3.3 - Prob. 53ECh. 3.3 - For Exercises 44 through 61, consider the problem...Ch. 3.3 - Prob. 55ECh. 3.3 - Prob. 56ECh. 3.3 - Prob. 57ECh. 3.3 - Prob. 58ECh. 3.3 - Prob. 59ECh. 3.3 - Prob. 60ECh. 3.3 - Find all points P in the plane such that you can...Ch. 3.3 - Prob. 62ECh. 3.3 - Consider two subspaces V and W of n , where Vis...Ch. 3.3 - Consider a subspace V of n with dim(V)=n . Explain...Ch. 3.3 - Consider two subspaces V and W of n , with VW={0}...Ch. 3.3 - Two subspaces V and W of n arc called...Ch. 3.3 - Consider linearly independent vectors v1,v2,...vp...Ch. 3.3 - Use Exercise 67 to construct a basis of 4 that...Ch. 3.3 - Consider two subspaces V and W of n . Show that...Ch. 3.3 - Use Exercise 69 to answer the following question:...Ch. 3.3 - Prob. 71ECh. 3.3 - Prob. 72ECh. 3.3 - Prob. 73ECh. 3.3 - Prob. 74ECh. 3.3 - Prob. 75ECh. 3.3 - Consider the matrix A=[1221] . Find scalars...Ch. 3.3 - Prob. 77ECh. 3.3 - An nn matrix A is called nilpotent if Am=0 for...Ch. 3.3 - Consider a nilpotent nn matrix A. Use the...Ch. 3.3 - Prob. 80ECh. 3.3 - Prob. 81ECh. 3.3 - If a 33 matrix A represents the projection onto a...Ch. 3.3 - Consider a 42 matrix A and a 25 matrix B. a. What...Ch. 3.3 - Prob. 84ECh. 3.3 - Prob. 85ECh. 3.3 - Prob. 86ECh. 3.3 - Prob. 87ECh. 3.3 - Prob. 88ECh. 3.3 - Prob. 89ECh. 3.3 - Prob. 90ECh. 3.4 - In Exercises 1 through 18, determine whether the...Ch. 3.4 - In Exercises 1 through 18, determine whether the...Ch. 3.4 - In Exercises 1 through 18, determine whether the...Ch. 3.4 - In Exercises 1 through 18, determine whether the...Ch. 3.4 - In Exercises 1 through 18, determine whether the...Ch. 3.4 - In Exercises 1 through 18, determine whether the...Ch. 3.4 - In Exercises 1 through 18, determine whether the...Ch. 3.4 - In Exercises 1 through 18, determine whether the...Ch. 3.4 - In Exercises 1 through 18, determine whether the...Ch. 3.4 - In Exercises 1 through 18, determine whether the...Ch. 3.4 - In Exercises 1 through 18, determine whether the...Ch. 3.4 - In Exercises 1 through 18, determine whether the...Ch. 3.4 - In Exercises 1 through 18, determine whether the...Ch. 3.4 - In Exercises 1 through 18, determine whether the...Ch. 3.4 - In Exercises 1 through 18, determine whether the...Ch. 3.4 - In Exercises 1 through 18, determine whether the...Ch. 3.4 - In Exercises 1 through 18, determine whether the...Ch. 3.4 - In Exercises 1 through 18, determine whether the...Ch. 3.4 - In Exercises 19 through 24, find the matrix B of...Ch. 3.4 - In Exercises 19 through 24, find the matrix B of...Ch. 3.4 - In Exercises 19 through 24, find the matrix B of...Ch. 3.4 - In Exercises 19 through 24, find the matrix B of...Ch. 3.4 - In Exercises 19 through 24, find the matrix B of...Ch. 3.4 - In Exercises 19 through 24, find the matrix B of...Ch. 3.4 - In Exercises 25 through 30, find the matrix B of...Ch. 3.4 - In Exercises 25 through 30, find the matrix B of...Ch. 3.4 - In Exercises 25 through 30, find the matrix B of...Ch. 3.4 - In Exercises 25 through 30, find the matrix B of...Ch. 3.4 - In Exercises 25 through 30, find the matrix B of...Ch. 3.4 - In Exercises 25 through 30, find the matrix B of...Ch. 3.4 - Let =(v1,v2,v3)be any basis of 3consisting of...Ch. 3.4 - Let =(v1,v2,v3)be any basis of 3consisting of...Ch. 3.4 - Let =(v1,v2,v3)be any basis of 3consisting of...Ch. 3.4 - Let =(v1,v2,v3)be any basis of 3consisting of...Ch. 3.4 - Let =(v1,v2,v3)be any basis of 3consisting of...Ch. 3.4 - Let =(v1,v2,v3)be any basis of 3consisting of...Ch. 3.4 - In Exercises 37 through 42, find a basis of n such...Ch. 3.4 - In Exercises 37 through 42, find a basis of n such...Ch. 3.4 - In Exercises 37 through 42, find a basis of n such...Ch. 3.4 - Prob. 40ECh. 3.4 - In Exercises 37 through 42, find a basis of n such...Ch. 3.4 - In Exercises 37 through 42, find a basis of n such...Ch. 3.4 - Consider the plane x1+2x2+x3=0 with basis...Ch. 3.4 - Consider the plane 2x13x2+4x3=0 with basis...Ch. 3.4 - Consider the plane 2x13x2+4x3=0. Find a basis of...Ch. 3.4 - Consider the plane x1+2x2+x3=0. Find a basis of...Ch. 3.4 - Consider a linear transformation T from 2 to 2...Ch. 3.4 - In the accompanying figure, sketch the vector x...Ch. 3.4 - Prob. 49ECh. 3.4 - Given a hexagonal tiling of the plane, such as you...Ch. 3.4 - Prob. 51ECh. 3.4 - If is a basis of n , is the transformation T from...Ch. 3.4 - Consider the basis of 2 consisting of the vectors...Ch. 3.4 - Let be the basis of n consisting of the vectors...Ch. 3.4 - Consider the basis of 2 consisting of the vectors...Ch. 3.4 - Find a basis of 2 such that andCh. 3.4 - Show that if a 33 matrix A represents the...Ch. 3.4 - Consider a 33 matrix A and a vector v in 3...Ch. 3.4 - Is matrix [2003] similar to matrix [2113] ?Ch. 3.4 - Is matrix [1001] similar to matrix [0110] ?Ch. 3.4 - Find a basis of 2 such that the matrix of the...Ch. 3.4 - Find a basis of 2 such that the matrix of the...Ch. 3.4 - Prob. 63ECh. 3.4 - Is matrix [abcd] similar to matrix [acbd] for all...Ch. 3.4 - Prove parts (a) and (b) of Theorem 3.4.6.Ch. 3.4 - Consider a matrix A of the form A=[abba] , where...Ch. 3.4 - If c0 ,find the matrix of the linear...Ch. 3.4 - Prob. 68ECh. 3.4 - If A is a 22 matrix such that A[12]=[36] and...Ch. 3.4 - Is there a basis of 2 such that matrix B of...Ch. 3.4 - Suppose that matrix A is similar to B, with B=S1AS...Ch. 3.4 - If A is similar to B, what is the relationship...Ch. 3.4 - Prob. 73ECh. 3.4 - Consider the regular tetrahedron in the...Ch. 3.4 - Prob. 75ECh. 3.4 - Prob. 76ECh. 3.4 - Prob. 77ECh. 3.4 - This problem refers to Leontief’s input—output...Ch. 3.4 - Prob. 79ECh. 3.4 - Prob. 80ECh. 3.4 - Consider the linear transformation...Ch. 3.4 - Prob. 82ECh. 3 - If v1,v2,...,vn and w1,w2,...,wm are any twobases...Ch. 3 - If A is a 56 matrix of rank 4, then the nullity of...Ch. 3 - The image of a 34 matrix is a subspace of 4 .Ch. 3 - The span of vectors v1,v2,...,vn consists of all...Ch. 3 - Prob. 5ECh. 3 - Prob. 6ECh. 3 - The kernel of any invertible matrix consists of...Ch. 3 - The identity matrix In is similar to all...Ch. 3 - Prob. 9ECh. 3 - The column vectors of a 54 matrix must be...Ch. 3 - Prob. 11ECh. 3 - Prob. 12ECh. 3 - Prob. 13ECh. 3 - Prob. 14ECh. 3 - Prob. 15ECh. 3 - Vectors [100],[210],[321] form a basis of 3 .Ch. 3 - Prob. 17ECh. 3 - Prob. 18ECh. 3 - Prob. 19ECh. 3 - Prob. 20ECh. 3 - Prob. 21ECh. 3 - Prob. 22ECh. 3 - Prob. 23ECh. 3 - Prob. 24ECh. 3 - Prob. 25ECh. 3 - If a 22 matrix P represents the orthogonal...Ch. 3 - Prob. 27ECh. 3 - Prob. 28ECh. 3 - Prob. 29ECh. 3 - Prob. 30ECh. 3 - Prob. 31ECh. 3 - Prob. 32ECh. 3 - Prob. 33ECh. 3 - Prob. 34ECh. 3 - Prob. 35ECh. 3 - If A and B are nn matrices, and vector v is in...Ch. 3 - Prob. 37ECh. 3 - Prob. 38ECh. 3 - Prob. 39ECh. 3 - Prob. 40ECh. 3 - Prob. 41ECh. 3 - If two nn matrices A and B have the same rank,...Ch. 3 - Prob. 43ECh. 3 - If A2=0 for a 1010 matrix A, then the inequality...Ch. 3 - Prob. 45ECh. 3 - Prob. 46ECh. 3 - Prob. 47ECh. 3 - Prob. 48ECh. 3 - Prob. 49ECh. 3 - Prob. 50ECh. 3 - Prob. 51ECh. 3 - Prob. 52ECh. 3 - Prob. 53E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- Given the following system of equations and its graph below, what can be determined about the slopes and y-intercepts of the system of equations? 7 y 6 5 4 3 2 -6-5-4-3-2-1 1+ -2 1 2 3 4 5 6 x + 2y = 8 2x + 4y = 12 The slopes are different, and the y-intercepts are different. The slopes are different, and the y-intercepts are the same. The slopes are the same, and the y-intercepts are different. O The slopes are the same, and the y-intercepts are the same.arrow_forwardChoose the function to match the graph. -2- 0 -7 -8 -9 --10- |--11- -12- f(x) = log x + 5 f(x) = log x - 5 f(x) = log (x+5) f(x) = log (x-5) 9 10 11 12 13 14arrow_forwardWhich of the following represents the graph of f(x)=3x-2? 7 6 5 4 ++ + + -7-6-5-4-3-2-1 1 2 3 4 5 6 7 -2 3 -5 6 -7 96 7 5 4 O++ -7-6-5-4-3-2-1 -2 -3 -4 -5 -7 765 432 -7-6-5-4-3-2-1 -2 ++ -3 -4 -5 -6 2 3 4 5 6 7 7 6 2 345 67 -7-6-5-4-3-2-1 2 3 4 5 67 4 -5arrow_forward
- 13) Let U = {j, k, l, m, n, o, p} be the universal set. Let V = {m, o,p), W = {l,o, k}, and X = {j,k). List the elements of the following sets and the cardinal number of each set. a) W° and n(W) b) (VUW) and n((V U W)') c) VUWUX and n(V U W UX) d) vnWnX and n(V WnX)arrow_forward9) Use the Venn Diagram given below to determine the number elements in each of the following sets. a) n(A). b) n(A° UBC). U B oh a k gy ท W z r e t ་ Carrow_forward10) Find n(K) given that n(T) = 7,n(KT) = 5,n(KUT) = 13.arrow_forward
- 7) Use the Venn Diagram below to determine the sets A, B, and U. A = B = U = Blue Orange white Yellow Black Pink Purple green Grey brown Uarrow_forward8) Use the Venn diagram provided to shade An Bº. A B U Darrow_forward5) Describe the difference between disjoint sets and overlapping sets.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning

Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,

Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning

Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning

College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Matrix Factorization - Numberphile; Author: Numberphile;https://www.youtube.com/watch?v=wTUSz-HSaBg;License: Standard YouTube License, CC-BY