General Physics, 2nd Edition
2nd Edition
ISBN: 9780471522782
Author: Morton M. Sternheim
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 31, Problem 24E
To determine
The biologically equivalent dose.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 95 kgkg patient swallows a 33 μCiμCi beta emitter with a half-life of 5.0 days, and the radioactive nuclei are quickly distributed throughout his body. The beta particles are emitted with an average energy of 0.35 MeVMeV, 90%% of which is absorbed by the body.
What dose equivalent does the patient receive in the first week?
A 75 kg patient swallows a 30 mCi beta emitter with a halflife of 5.0 days, and the radioactive nuclei are quickly distributed throughout his body. The beta particles are emitted with an average energy of 0.35 MeV, 90% of which is absorbed by the body. What dose equivalent does the patient receive in the first week?
During a 2-h period of radiation therapy, alpha radiation is deposited into a patient's body at a rate of 3.3 x 10-8 J/s. What effective dose does the 59-kg patient receive? (Units: mSv)
Use the following table of RBEs.
Radiation type
RBE
X-rays
1
Gamma rays
1
Electrons
1
Protons
2
Alpha particles
20
Chapter 31 Solutions
General Physics, 2nd Edition
Ch. 31 - Prob. 1RQCh. 31 - Prob. 2RQCh. 31 - Prob. 3RQCh. 31 - Prob. 4RQCh. 31 - Prob. 5RQCh. 31 - Prob. 6RQCh. 31 - Prob. 7RQCh. 31 - Prob. 8RQCh. 31 - Prob. 9RQCh. 31 - Prob. 10RQ
Ch. 31 - Prob. 1ECh. 31 - Prob. 2ECh. 31 - Prob. 3ECh. 31 - Prob. 4ECh. 31 - Prob. 5ECh. 31 - Prob. 6ECh. 31 - Prob. 7ECh. 31 - Prob. 8ECh. 31 - Prob. 9ECh. 31 - Prob. 10ECh. 31 - Prob. 11ECh. 31 - Prob. 12ECh. 31 - Prob. 13ECh. 31 - Prob. 14ECh. 31 - Prob. 15ECh. 31 - Prob. 16ECh. 31 - Prob. 17ECh. 31 - Prob. 18ECh. 31 - Prob. 19ECh. 31 - Prob. 20ECh. 31 - Prob. 21ECh. 31 - Prob. 22ECh. 31 - Prob. 23ECh. 31 - Prob. 24ECh. 31 - Prob. 25ECh. 31 - Prob. 26ECh. 31 - Prob. 27ECh. 31 - Prob. 28ECh. 31 - Prob. 29ECh. 31 - Prob. 30ECh. 31 - Prob. 31ECh. 31 - Prob. 32ECh. 31 - Prob. 33ECh. 31 - Prob. 34ECh. 31 - Prob. 35ECh. 31 - Prob. 36ECh. 31 - Prob. 37ECh. 31 - Prob. 38ECh. 31 - Prob. 39ECh. 31 - Prob. 40ECh. 31 - Prob. 41ECh. 31 - Prob. 42ECh. 31 - Prob. 43ECh. 31 - Prob. 44ECh. 31 - Prob. 45ECh. 31 - Prob. 46ECh. 31 - Prob. 47ECh. 31 - Prob. 48ECh. 31 - Prob. 49ECh. 31 - Prob. 50ECh. 31 - Prob. 51ECh. 31 - Prob. 52ECh. 31 - Prob. 53ECh. 31 - Prob. 54ECh. 31 - Prob. 55ECh. 31 - Prob. 57E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Calculate the dose in Sv to the chest at a patient given an xray under the following conditions. The xray beam intensity is 1.50 W/m2, the area of the chest exposed is 0.0750 m2 35.0% of the xrays are absorbed in 20.0 kg of tissue, and the exposure time is 0.250 s.arrow_forwardWhat is the dose in mSv for: (a) a 0.1 Gy xray? (b) 2.5 mGy of neutron exposure to the eye? (c) 1.5 mGy of exposure?arrow_forwardData from the appendices and the periodic table may be needed for these problems. Show that the activity of the 14C in 1.00 g of 12C found in living tissue is 0.250 Bq.arrow_forward
- A beam of 168MeV nitrogen nuclei is used for cancer therapy. If this beam is directed onto a 0.200kg tumor and gives it a 2.00Sv dose, how many nitrogen nuclei were stopped? (Use an RBE of 20 for heavy ions.)arrow_forwardWhat is the dose in Sv in a cancer treatment that exposes the patient to 200 Gy of rays?arrow_forwardFind the radiation dose in Gy for: (a) A 10-mSv fluoroscopic X-ray series, (b) 50 mSv of skin exposure by an a emitter, (c) 160 mSv of and rays from the 40K in your body.arrow_forward
- Find the radiation dose in Gy for: (a) A 10mSv fluoroscopic xray series. (b) 50 mSv of skin exposure by an emitter. (c) 160 mSv of and rays from the 40K in your body.arrow_forwardIf everyone in Australia received an extra 0.05 mSv per year of radiation, what would be the increase in the number of cancer deaths per year? (Assume that time had elapsed for the effects to become apparent.) Assume that there are 200104 deaths per Sv of radiation per year. What percent at the actual number of cancer deaths recorded is this?arrow_forwardA 73.0 kg person experiences a whole-body exposure to alpha radiation with an energy of 1.50 MeVMeV. A total of 5.40×1012 alpha particles is absorbed. Use the Table of Relative biological effectiveness (RBE) for several types of radiation. A) What is the absorbed dose in rad? Express your answer in rads. B) What is the equivalent dose in rem? Express your answer in rem. C) If the source is 0.0100 gg of 226Ra (half-life 1600 years) somewhere in the body, what is the activity of the source? Express your answer in decays per second. D) If all the alpha particles produced are absorbed, what time is required for this dose to be delivered? Express your answer with the appropriate units.arrow_forward
- A 85 kg patient swallows a 31 μCi beta emitter with a half-life of 5.0 days, and the radioactive nuclei are quickly distributed throughout his body. The beta particles are emitted with an average energy of 0.35 MeV, 90% of which is absorbed by the body. What dose equivalent does the patient receive in the first week in mSv?arrow_forwardA small region of a cancer patient’s brain is exposed for 24.0 min to 475 Bq of radioactivity from ⁶⁰Co for treatment of atumor. If the brain mass exposed is 1.858 g and β⁻ each particle emitted has an energy of 5.05X10⁻¹⁴J, what is the dose in rads?arrow_forwardA chest x ray uses 10 keV photons. A 60 kg person receives a 30 mrem dose from one x ray that exposes 25% of the patient’s body. How many x-ray photons are absorbed in the patient’s body?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning