Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
5th Edition
ISBN: 9780980232776
Author: Gilbert Strang
Publisher: Wellesley-Cambridge Press
bartleby

Videos

Question
100%
Book Icon
Chapter 3.1, Problem 1PS
To determine

Which of the rule is not satisfied with the given condition of vector addition and scalar multiplication?

Expert Solution & Answer
Check Mark

Answer to Problem 1PS

   x+yy+x

   (x+y)+zx+(y+z)

   (c1+c2)xc1x+c2x

Explanation of Solution

Given information:

   (1)x+y=y+x(2)x+(y+z)=(x+y)+z(3)There is a unique "zero vector" such that x+0=xx (4)For each xthere is a unique vector xsuch that x+(x)=0x(5)1 times xequals x, i.e., 1x=x(6)(c1c2)x=c1(c2x)(7)c(x+y)=cx+cy(8)(c1+c2)x=c1x+c2x

(1) to (4) about x+y

(5) to (6) about cx

(7) to (8) connects them

We suppose

   x=(x1,x2)y=(y1,y2)z=(z1,z2)

Then,

   1) First condition

   x+y=(x1,x2)+(y1,y2)

=(x1+y2,x2+y1)

and

   y+x=(y1,y2)+(x1,x2)

   =(y1+x2,y2+x1)

Clearly, we can see that,

   x+yy+x

Therefore, the first condition is not satisfied.

   2) We check the second condition

   x+y=(x1,x2)+(y1,y2)

   =(x1+y2,x2+y1)

   (x+y)+z=(x1+y2,x2+y1)+(z2+z1)

   =(x1+y2+z2,x2+y1+z1)

and

   y+z=(y1,y2)+(z1,z2)

   =(y1+z2,y2+z1)

   x+(y+z)=(x1+y2+z1,x2+y1+z1)

Clearly, we can see that

   (x+y)+zx+(y+z)

Therefore, the second condition is not satisfied.

   3) We check the third condition

Since,

   x+0=(x1,x2)+(0,0)

   =(x1+0,x2+0)

   =(x1,x2)

   =x

Therefore, the third condition is satisfied.

   4) We check the fourth condition.

   x=(x2,x1)

Then,

   x+(x)=(x1,x2)+(x2,x1)

   =(x1x1,x2x2)

   =(0,0)

   =0

   5) This condition is automatically satisfied.

   6) We suppose there are two scalars

   c1,c2

   (c1c2)x=(c1c2)(x1,x2)(c1c2)x=(c1c2x1,c1c2x2)(c1c2)x=(c1(c2x1),c1(c2x2))(c1c2)x=c1(c2x2)

Therefore, this condition is satisfied.

7) We check the condition for scalar c

   x+y=(x1+x2)+(y1+y2)

   =(x1+y2,x2+y1)

   c(x+y)=(c(x1+y2),c(x2+y1))

   =(cx1+cy2,cx2+cy1)

and

   cx+cy=c(x1,x2),c(y2+y2)

   =(cx1+cx2)+(cy2+cy2)

   =(cx1+cy2,cx2+cy1)

Therefore,

   c(x+y)=cx+cy

Therefore, his condition is satisfied.

   8) We suppose there are two scalars

   c1,c2

Therefore,

   (c1+c2)x=(c1+c2)(x1,x2)

   =((c1+c2)x1,(c1+c2)x2)

   =(c1x1+c2x1,c1x2+c2x2)

and

   c1x+c2x=c1(x1,x2)+c2(x1,x2)

   =(c1x1,c2x2)+(c2x1,c2x2)

   =(c1x1+c2x1,c1x2+c2x2)

Therefore

   (c1+c2)xc1x+c2x

Therefore, this condition is not satisfied.

Conclusion:

Therefore

   x+yy+x

   (x+y)+zx+(y+z)

   (c1+c2)xc1x+c2x

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Co Given show that Solution Take home Су-15 1994 +19 09/2 4 =a log суто - 1092 ж = a-1 2+1+8 AI | SHOT ON S4 INFINIX CAMERA
a Question 7. If det d e f ghi V3 = 2. Find det -1 2 Question 8. Let A = 1 4 5 0 3 2. 1 Find adj (A) 2 Find det (A) 3 Find A-1 2g 2h 2i -e-f -d 273 2a 2b 2c
Question 1. Solve the system - x1 x2 + 3x3 + 2x4 -x1 + x22x3 + x4 2x12x2+7x3+7x4 Question 2. Consider the system = 1 =-2 = 1 3x1 - x2 + ax3 = 1 x1 + 3x2 + 2x3 x12x2+2x3 = -b = 4 1 For what values of a, b will the system be inconsistent? 2 For what values of a, b will the system have only one solution? For what values of a, b will the saystem have infinitely many solutions?

Chapter 3 Solutions

Introduction to Linear Algebra, Fifth Edition

Ch. 3.1 - Prob. 11PSCh. 3.1 - Prob. 12PSCh. 3.1 - Prob. 13PSCh. 3.1 - Prob. 14PSCh. 3.1 - Prob. 15PSCh. 3.1 - Prob. 16PSCh. 3.1 - Prob. 17PSCh. 3.1 - Prob. 18PSCh. 3.1 - Prob. 19PSCh. 3.1 - Prob. 20PSCh. 3.1 - Prob. 21PSCh. 3.1 - Prob. 22PSCh. 3.1 - Prob. 23PSCh. 3.1 - Prob. 24PSCh. 3.1 - Prob. 25PSCh. 3.1 - Prob. 26PSCh. 3.1 - Prob. 27PSCh. 3.1 - Prob. 28PSCh. 3.1 - Prob. 29PSCh. 3.1 - Prob. 30PSCh. 3.1 - Prob. 31PSCh. 3.1 - Prob. 32PSCh. 3.2 - Prob. 1PSCh. 3.2 - Prob. 2PSCh. 3.2 - Prob. 3PSCh. 3.2 - Prob. 4PSCh. 3.2 - Prob. 5PSCh. 3.2 - Prob. 6PSCh. 3.2 - Prob. 7PSCh. 3.2 - Prob. 8PSCh. 3.2 - Prob. 9PSCh. 3.2 - Prob. 10PSCh. 3.2 - Prob. 11PSCh. 3.2 - Prob. 12PSCh. 3.2 - Prob. 13PSCh. 3.2 - Prob. 14PSCh. 3.2 - Prob. 15PSCh. 3.2 - Prob. 16PSCh. 3.2 - Prob. 17PSCh. 3.2 - Prob. 18PSCh. 3.2 - Prob. 19PSCh. 3.2 - Prob. 20PSCh. 3.2 - Prob. 21PSCh. 3.2 - Prob. 22PSCh. 3.2 - Prob. 23PSCh. 3.2 - Prob. 24PSCh. 3.2 - Prob. 25PSCh. 3.2 - Prob. 26PSCh. 3.2 - Prob. 27PSCh. 3.2 - Prob. 28PSCh. 3.2 - Prob. 29PSCh. 3.2 - Prob. 30PSCh. 3.2 - Prob. 31PSCh. 3.2 - Prob. 32PSCh. 3.2 - Prob. 33PSCh. 3.2 - Prob. 34PSCh. 3.2 - Prob. 35PSCh. 3.2 - Prob. 36PSCh. 3.2 - Prob. 37PSCh. 3.2 - Prob. 38PSCh. 3.2 - Prob. 39PSCh. 3.2 - Prob. 40PSCh. 3.2 - Prob. 41PSCh. 3.2 - Prob. 42PSCh. 3.2 - Prob. 43PSCh. 3.2 - Prob. 44PSCh. 3.2 - Prob. 45PSCh. 3.2 - Prob. 46PSCh. 3.2 - Prob. 47PSCh. 3.2 - Prob. 48PSCh. 3.2 - Prob. 49PSCh. 3.2 - Prob. 50PSCh. 3.2 - Prob. 51PSCh. 3.2 - Prob. 52PSCh. 3.2 - Prob. 53PSCh. 3.2 - Prob. 54PSCh. 3.2 - Prob. 55PSCh. 3.2 - Prob. 56PSCh. 3.2 - Prob. 57PSCh. 3.2 - Prob. 58PSCh. 3.2 - Prob. 59PSCh. 3.2 - Prob. 60PSCh. 3.3 - Prob. 1PSCh. 3.3 - Prob. 2PSCh. 3.3 - Prob. 3PSCh. 3.3 - Prob. 4PSCh. 3.3 - Prob. 5PSCh. 3.3 - Prob. 6PSCh. 3.3 - Prob. 7PSCh. 3.3 - Prob. 8PSCh. 3.3 - Prob. 9PSCh. 3.3 - Prob. 10PSCh. 3.3 - Prob. 11PSCh. 3.3 - Prob. 12PSCh. 3.3 - Prob. 13PSCh. 3.3 - Prob. 14PSCh. 3.3 - Prob. 15PSCh. 3.3 - Prob. 16PSCh. 3.3 - Prob. 17PSCh. 3.3 - Prob. 18PSCh. 3.3 - Prob. 19PSCh. 3.3 - Prob. 20PSCh. 3.3 - Prob. 21PSCh. 3.3 - Prob. 22PSCh. 3.3 - Prob. 23PSCh. 3.3 - Prob. 24PSCh. 3.3 - Prob. 25PSCh. 3.3 - Prob. 26PSCh. 3.3 - Prob. 27PSCh. 3.3 - Prob. 28PSCh. 3.3 - Prob. 29PSCh. 3.3 - Prob. 30PSCh. 3.3 - Prob. 31PSCh. 3.3 - Prob. 32PSCh. 3.3 - Prob. 33PSCh. 3.3 - Prob. 34PSCh. 3.3 - Prob. 35PSCh. 3.3 - Prob. 36PSCh. 3.3 - Prob. 37PSCh. 3.4 - Prob. 1PSCh. 3.4 - Prob. 2PSCh. 3.4 - Prob. 3PSCh. 3.4 - Prob. 4PSCh. 3.4 - Prob. 5PSCh. 3.4 - Prob. 6PSCh. 3.4 - Prob. 7PSCh. 3.4 - Prob. 8PSCh. 3.4 - Prob. 9PSCh. 3.4 - Prob. 10PSCh. 3.4 - Prob. 11PSCh. 3.4 - Prob. 12PSCh. 3.4 - Prob. 13PSCh. 3.4 - Prob. 14PSCh. 3.4 - Prob. 15PSCh. 3.4 - Prob. 16PSCh. 3.4 - Prob. 17PSCh. 3.4 - Prob. 18PSCh. 3.4 - Prob. 19PSCh. 3.4 - Prob. 20PSCh. 3.4 - Prob. 21PSCh. 3.4 - Prob. 22PSCh. 3.4 - Prob. 23PSCh. 3.4 - Prob. 24PSCh. 3.4 - Prob. 25PSCh. 3.4 - Prob. 26PSCh. 3.4 - Prob. 27PSCh. 3.4 - Prob. 28PSCh. 3.4 - Prob. 29PSCh. 3.4 - Prob. 30PSCh. 3.4 - Prob. 31PSCh. 3.4 - Prob. 32PSCh. 3.4 - Prob. 33PSCh. 3.4 - Prob. 34PSCh. 3.4 - Prob. 35PSCh. 3.4 - Prob. 36PSCh. 3.4 - Prob. 37PSCh. 3.4 - Prob. 38PSCh. 3.4 - Prob. 39PSCh. 3.4 - Prob. 40PSCh. 3.4 - Prob. 41PSCh. 3.4 - Prob. 42PSCh. 3.4 - Prob. 43PSCh. 3.4 - Prob. 44PSCh. 3.4 - Prob. 45PSCh. 3.4 - Prob. 46PSCh. 3.5 - Prob. 1PSCh. 3.5 - Prob. 2PSCh. 3.5 - Prob. 3PSCh. 3.5 - Prob. 4PSCh. 3.5 - Prob. 5PSCh. 3.5 - Prob. 6PSCh. 3.5 - Prob. 7PSCh. 3.5 - Prob. 8PSCh. 3.5 - Prob. 9PSCh. 3.5 - Prob. 10PSCh. 3.5 - Prob. 11PSCh. 3.5 - Prob. 12PSCh. 3.5 - Prob. 13PSCh. 3.5 - Prob. 14PSCh. 3.5 - Prob. 15PSCh. 3.5 - Prob. 16PSCh. 3.5 - Prob. 17PSCh. 3.5 - Prob. 18PSCh. 3.5 - Prob. 19PSCh. 3.5 - Prob. 20PSCh. 3.5 - Prob. 21PSCh. 3.5 - Prob. 22PSCh. 3.5 - Prob. 23PSCh. 3.5 - Prob. 24PSCh. 3.5 - Prob. 25PSCh. 3.5 - Prob. 26PSCh. 3.5 - Prob. 27PSCh. 3.5 - Prob. 28PSCh. 3.5 - Prob. 29PSCh. 3.5 - Prob. 30PSCh. 3.5 - Prob. 31PS
Knowledge Booster
Background pattern image
Algebra
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:PEARSON
Text book image
Contemporary Abstract Algebra
Algebra
ISBN:9781305657960
Author:Joseph Gallian
Publisher:Cengage Learning
Text book image
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Text book image
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:9780135163078
Author:Michael Sullivan
Publisher:PEARSON
Text book image
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:9780980232776
Author:Gilbert Strang
Publisher:Wellesley-Cambridge Press
Text book image
College Algebra (Collegiate Math)
Algebra
ISBN:9780077836344
Author:Julie Miller, Donna Gerken
Publisher:McGraw-Hill Education
HOW TO FIND DETERMINANT OF 2X2 & 3X3 MATRICES?/MATRICES AND DETERMINANTS CLASS XII 12 CBSE; Author: Neha Agrawal Mathematically Inclined;https://www.youtube.com/watch?v=bnaKGsLYJvQ;License: Standard YouTube License, CC-BY
What are Determinants? Mathematics; Author: Edmerls;https://www.youtube.com/watch?v=v4_dxD4jpgM;License: Standard YouTube License, CC-BY