BIOCHEMISTRY II >CUSTOM<
BIOCHEMISTRY II >CUSTOM<
17th Edition
ISBN: 9781337449014
Author: GARRETT
Publisher: CENGAGE C
Question
Book Icon
Chapter 31, Problem 1P
Interpretation Introduction

Interpretation:

The number of ATP equivalents consumption during the synthesis of the rhodanese polypeptide chain from its constituent amino acids needs to be determined.

Concept Introduction:

Amino acids are organic compounds containing amino as well as acidic groups. The general molecular formula of an amino acid is as follows:

  H2N-CH(R)COOH

Here, R refers to the different group for different amino acids. If there is more than one amino group present in an amino acid, they are considered as basic amino acids and if there is more than one carboxylic group, then they are considered as acidic amino acids.

Expert Solution & Answer
Check Mark

Explanation of Solution

Elongation of the amino acid needs 4 ATP per amino acid. The initial step in elongating the polypeptide activates the amino acids and then it is connected to the tRNA. This procedure converts an ATP to an AMP, costing two phosphate groups. This is equal in hydrolyzing two ATPs in this step.

Subsequent, the “loaded” aminoacyl-tRNA is moved towards the ribosome’s A-site. This is achieved with the aid of the elongation factor EF-Tu and the GTP’s hydrolysis. The GTP hydrolysis is actively equal to hydrolyzing another ATP.

Lastly, the aminoacyl-tRNA is moved to the P-Site from A-site utilizing EF-G: GTP complex. Again, GTP is hydrolyzed to the GDP which is again equivalent to the single GTP hydrolysis. Thus, there are total 4 ATP equivalents per amino acids.

  295A.A×4ATPA.A.=1180 ATP

We now should consider termination and initiation. Initiation needs 2 ATP. One is in the form of GTP, for Met-tRNAi binding to form the 40S pre-initiation complex, and another is in the form of ATP in forming the initiation complex. The Met-tRNAi formation costs another 2 ATP.

Termination needs the hydrolysis of a single GTP. This means that for the amino acid, which is about 296 amino acids long, 4 ATP equivalents would be consumed within initiation, 1180 ATP equivalents are consumed during elongation, plus 1 ATP equivalent are consumed during termination. In this process, total 1185 ATP equivalents are provided.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
carbons in each of the structures below. For instance, the central carbon of chloromethylbutane (pictured 3. A chiral carbon is a carbon that is single-bonded to four different types of groups. Identify the chiral above) is a chiral carbon. (Can you see how the groups attached to it are all chemically different?) In each of the chiral molecules below, identify all the carbons that are chiral carbons by drawing a circle around each one of them. (a) the carbohydrate glucose H O (b) the carbohydrate fructose CH₂OH 1C H-C-OH 3 HO-C-H 4 H-C-OH 5 H-C-OH 6CH₂OH D-Glucose (linear form) (c) the amino acid leucine O O H3C. HO H H- -OH CH 3 NH2 H- -OH CH₂OH OH
We always include controls in the Annexin-V-GFP/Propidium Iodide flow cytometric assay to study apoptosis. List four types of controls in this assay.  Why do we need these controls? Explain your answers.  After the flow assay, if we like to examine the morphology of the viable, early apoptotic and late apoptotic cells by confocal microscopy, what can we do and what are the expected results?
3. (2 points) Your lab partner accidentally used a pen instead of a pencil to mark the baseline and label the lanes of their TLC plate. Briefly (1-2 sentences for each point) describe (a) what would happen to the ink when you develop the TLC plate; and (b) how this would affect the experiment. 1
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Biochemistry
    Biochemistry
    ISBN:9781305577206
    Author:Reginald H. Garrett, Charles M. Grisham
    Publisher:Cengage Learning
    Text book image
    Anatomy & Physiology
    Biology
    ISBN:9781938168130
    Author:Kelly A. Young, James A. Wise, Peter DeSaix, Dean H. Kruse, Brandon Poe, Eddie Johnson, Jody E. Johnson, Oksana Korol, J. Gordon Betts, Mark Womble
    Publisher:OpenStax College
    Text book image
    Biology 2e
    Biology
    ISBN:9781947172517
    Author:Matthew Douglas, Jung Choi, Mary Ann Clark
    Publisher:OpenStax
  • Text book image
    Biology: The Dynamic Science (MindTap Course List)
    Biology
    ISBN:9781305389892
    Author:Peter J. Russell, Paul E. Hertz, Beverly McMillan
    Publisher:Cengage Learning
    Text book image
    Biochemistry
    Biochemistry
    ISBN:9781305961135
    Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougal
    Publisher:Cengage Learning
Text book image
Biochemistry
Biochemistry
ISBN:9781305577206
Author:Reginald H. Garrett, Charles M. Grisham
Publisher:Cengage Learning
Text book image
Anatomy & Physiology
Biology
ISBN:9781938168130
Author:Kelly A. Young, James A. Wise, Peter DeSaix, Dean H. Kruse, Brandon Poe, Eddie Johnson, Jody E. Johnson, Oksana Korol, J. Gordon Betts, Mark Womble
Publisher:OpenStax College
Text book image
Biology 2e
Biology
ISBN:9781947172517
Author:Matthew Douglas, Jung Choi, Mary Ann Clark
Publisher:OpenStax
Text book image
Biology: The Dynamic Science (MindTap Course List)
Biology
ISBN:9781305389892
Author:Peter J. Russell, Paul E. Hertz, Beverly McMillan
Publisher:Cengage Learning
Text book image
Biochemistry
Biochemistry
ISBN:9781305961135
Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougal
Publisher:Cengage Learning