Concept explainers
The total kinetic energy of the particles.
Answer to Problem 1OQ
Option (c).
Explanation of Solution
In the given decay process, muon decays into an electron, electron antineutrino and a muon neutrino. Here, muon is having greater value of rest mass energy than electron and neutrinos together.
The rest mass energy for muon is 105.7MeV/c2. On the other hand, the electron is having rest mass energy for 0.511MeV/c2 and that for neutrinos is less than 0.3MeV/c2. Thus, muon is having more rest mass energy than others.
Write the expression for the energy.
Here,
Conclusion:
Since, the muon is having more rest mass energy than others. Thus, option (c) is correct.
Since, total kinetic energy is not zero. Thus, option (a) is incorrect.
Since, the muon is not having less rest mass energy than others. Thus, option (b) is incorrect.
Since, the muon is having more rest mass energy than others. Thus, option (d) is incorrect.
Want to see more full solutions like this?
Chapter 31 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
- If the rest energies of a proton and a neutron (the two constituents of nuclei) are 938.3 and 939.6 MeV, what is the difference in their mass in kilograms?arrow_forward(a) Beta decay is nuclear decay in which an electron is emitted. If the electron is given 0.750 MeV of kinetic energy, what is its velocity? (b) Comment on how the high velocity is consistent with the kinetic energy as it compares to the rest mass energy of the electron.arrow_forwardThe average lifetime of a pi meson in its own frame of reference is 2.6 × 10−8 s. If the meson moves with a speed of 0.95c, what is (a) its mean lifetime as measured by an observer on Earth and (b) the average distance it travels before decaying, as measured by an observer on Earth?arrow_forward
- In a nuclear power plain, the fuel rods last 3 yr before they are replaced. The plant can transform energy at a maximum possible rate of 1.00 GW. Supposing it operates at 80.0% capacity for 3.00 yr, what is the loss of mass of the fuel?arrow_forwardWhat is for a proton having amass energy of 938.3 MeV accelerated through an effective potential of 1.0 TV (teravolt)?arrow_forwardThe primary decay mode for the negative pion is +v . (a) What is the energy release in MeV in this decay? (b) Using conservation of momentum, how much energy does each of the decay products receive, given the is at rest when it decays? You may assume the muon antineutrino is massless and has momentum p = E/c , just like a photon.arrow_forward
- A pion at rest (m = 273me) decays to a muon (m = 207me) and an antineutrino (mp 0). The reaction is written + v. Find (a) the kinetic energy of the muon and (b) the energy of the antineutrino in electron volts.arrow_forwardPlans for ail accelerator that produces a secondary beam of K mesons to scatter from nuclei, for the purpose of studying the strong force, call for them to have a kinetic energy of 500 MeV. (a) What would the relativistic quantity =11v2/c2be for these particles? (b) How long would their average lifetime be in the laboratory? (c) How far could they travel in this time?arrow_forwardA positron is an antimatter version of the electron, having exactly the same mass. When a positron and an electron meet, they annihilate, converting all of their mass into energy. (a) Find the energy released, assuming negligible kinetic energy before the annihilation. (b) If this energy is given to a proton in the form of kinetic energy, what is its velocity? (c) If this energy is given to another electron in the form of kinetic energy, what is its velocity?arrow_forward
- (a) Using data from Table 7.1, find the mass destroyed when the energy in a barrel of crude oil is released. (b) Given these barrels contain 200 liters and assuming the density of crude oil is 750 kg/m3, what is the ratio of mass destroyed to original mass, m/m ?arrow_forwardEnergy reaches the upper atmosphere of the Earth from the Sun at the rate of 1.79 1017 W. If all of this energy were absorbed by the Earth and not re-emitted, how much would the mass of the Earth increase in 1.00 yr?arrow_forwardAn unstable particle with a mass equal to 3.34 1027 kg is initially at rest. The particle decay's into two fragments that fly off with velocities of 0.987c and 0.868c, respectively. Find the masses of the fragments. Hint: Conserve both mass-energy and momentum.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning