
Numerical Analysis
3rd Edition
ISBN: 9780134696454
Author: Sauer, Tim
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3.1, Problem 12E
Can a degree 3 polynomial intersect a degree 4 polynomial in exactly five points? Explain.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Remix
4. Direction Fields/Phase Portraits. Use the given direction fields to plot solution curves
to each of the given initial value problems.
(a)
x = x+2y
1111
y = -3x+y
with x(0) = 1, y(0) = -1
(b) Consider the initial value problem corresponding to the given phase portrait.
x = y
y' = 3x + 2y
Draw two "straight line solutions"
passing through (0,0)
(c) Make guesses for the equations of the straight line solutions: y = ax.
It was homework
No chatgpt pls will upvote
Chapter 3 Solutions
Numerical Analysis
Ch. 3.1 - Use Lagrange interpolation to find a polynomial...Ch. 3.1 - Use Newtons divided differences to find the...Ch. 3.1 - How many degree d polynomials pass through the...Ch. 3.1 - (a) Find a polynomial P(x) of degree 3 or less...Ch. 3.1 - (a) Find a polynomial P(x) of degree 3 or less...Ch. 3.1 - Write down a polynomial of degree exactly 5 that...Ch. 3.1 - Find P(0), where P(x) is the degree 10 polynomial...Ch. 3.1 - Let P(x) be the degree 9 polynomial that takes the...Ch. 3.1 - Give an example of the following, or explain why...Ch. 3.1 - Let P(x) be the degree 5 polynomial that takes the...
Ch. 3.1 - Let P1, P2, P3, and P4 be four different points...Ch. 3.1 - Can a degree 3 polynomial intersect a degree 4...Ch. 3.1 - Let P(x) be the degree 10 polynomial through the...Ch. 3.1 - Write down 4 noncollinear points (1,y1), (2,y2),...Ch. 3.1 - Write down the degree 25 polynomial that passes...Ch. 3.1 - List all degree 42 polynomials that pass through...Ch. 3.1 - The estimated mean atmospheric concentration of...Ch. 3.1 - Prob. 18ECh. 3.1 - Apply the following world population figures to...Ch. 3.1 - Write a version of Program 3.2 that is a MATLAB...Ch. 3.1 - Write a MATLAB function polyinterp.m that takes as...Ch. 3.1 - Remodel the sin1 calculator key in Program 3.3 to...Ch. 3.1 - (a) Use the addition formulas for sin and cos to...Ch. 3.2 - Find the degree 2 interpolating polynomial P2(x)...Ch. 3.2 - (a) Given the data points (1,0), (2,In2), (4,In4),...Ch. 3.2 - Assume that the polynomial P9(x) interpolates the...Ch. 3.2 - Consider the interpolating polynomial for...Ch. 3.2 - Assume that a function f(x) has been approximated...Ch. 3.2 - Assume that the polynomial P5(x) interpolates a...Ch. 3.2 - (a) Use the method of divided differences to find...Ch. 3.2 - Plot the interpolation error of the sin1 key from...Ch. 3.2 - The total world oil production in millions of...Ch. 3.2 - Use the degree 3 polynomial through the first four...Ch. 3.3 - List the Chebyshev interpolation nodes x1,...,xn...Ch. 3.3 - Find the upper bound for | (xx1)...(xxn) | on the...Ch. 3.3 - Assume that Chebyshev interpolation is used to...Ch. 3.3 - Answer the same questions as in Exercise 3, but...Ch. 3.3 - Find an upper bound for the error on [ 0,2 ] when...Ch. 3.3 - Assume that you are to use Chebyshev interpolation...Ch. 3.3 - Suppose you are designing the In key for a...Ch. 3.3 - Let Tn(x) denote the degree n Chebyshev...Ch. 3.3 - Determine the following values: (a) T999(1) (b)...Ch. 3.3 - Prob. 1CPCh. 3.3 - Prob. 2CPCh. 3.3 - Carry out the steps of Computer Problem 2 forIn x,...Ch. 3.3 - Let f(x)=e| x |, Compare evenly spaced...Ch. 3.3 - Prob. 5CPCh. 3.4 - Decide whether the equations form a cubic spline....Ch. 3.4 - Check the spline conditions for {...Ch. 3.4 - Find c in the following cubic splines. Which of...Ch. 3.4 - Find k1,k2,k3 in the following cubic spline. Which...Ch. 3.4 - How many natural cubic splines on [ 0,2 ] are...Ch. 3.4 - Find the parabolically terminated cubic spline...Ch. 3.4 - Solve equations 3.26 to find the natural cubic...Ch. 3.4 - Solve equations 3.26 to find the natural cubic...Ch. 3.4 - Prob. 9ECh. 3.4 - True or false: Given n=3 data points, the...Ch. 3.4 - (a) How many parabolically terminated cubic...Ch. 3.4 - How many not-a-knot cubic splines are there for...Ch. 3.4 - Find b1 and c3 in the cubic spline S(x)={...Ch. 3.4 - Prob. 14ECh. 3.4 - Prob. 15ECh. 3.4 - Prob. 16ECh. 3.4 - Prob. 17ECh. 3.4 - Prob. 18ECh. 3.4 - Prob. 19ECh. 3.4 - Discuss the existence and uniqueness of a...Ch. 3.4 - Prob. 21ECh. 3.4 - Prob. 1CPCh. 3.4 - Find and plot the not-a-knot cubic spline that...Ch. 3.4 - Find and plot the cubic spline S satisfying...Ch. 3.4 - Prob. 4CPCh. 3.4 - Prob. 5CPCh. 3.4 - Find and plot the cubic spline S satisfying...Ch. 3.4 - Prob. 7CPCh. 3.4 - Prob. 8CPCh. 3.4 - Find the clamped cubic spline that interpolates...Ch. 3.4 - Find the number of interpolation nodes in Computer...Ch. 3.4 - (a) Consider the natural cubic spline through the...Ch. 3.4 - Prob. 12CPCh. 3.4 - In a single plot, show the natural, not-a-knot,...Ch. 3.4 - Prob. 14CPCh. 3.4 - Prob. 15CPCh. 3.5 - Find the one-piece Bézier curve (x(t),y(t))...Ch. 3.5 - Find the first endpoint two control points, and...Ch. 3.5 - Find the three-piece Bézier curve forming the...Ch. 3.5 - Build a four-piece Bézier spline that forms a...Ch. 3.5 - Describe the character drawn by the following...Ch. 3.5 - Describe the character drawn by the following...Ch. 3.5 - Find a one-piece Bézier spline that has vertical...Ch. 3.5 - Find a one-piece Bezier spline that has a...Ch. 3.5 - Prob. 9ECh. 3.5 - Find the knots and control points for the...Ch. 3.5 - Prove the facts in (3.27), and explain how they...Ch. 3.5 - Given (x1,y1), (x2,y2), (x3,y3), and (x4,y4), show...Ch. 3.5 - Plot the cure in Exercise 7.Ch. 3.5 - Prob. 2CPCh. 3.5 - Plot the letter from Bézier curves: (a) W (b) B...Ch. 3.5 - Use the bezierdraw.m program of Section 3.5 to...Ch. 3.5 - Revise the draw program to accept an n8 matrix of...Ch. 3.5 - Using the template above and your favorite text...Ch. 3.5 - Prob. 4SACh. 3.5 - Although font information was a closely guarded...Ch. 3.5 - Prob. 6SA
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- (7) (12 points) Let F(x, y, z) = (y, x+z cos yz, y cos yz). Ꮖ (a) (4 points) Show that V x F = 0. (b) (4 points) Find a potential f for the vector field F. (c) (4 points) Let S be a surface in R3 for which the Stokes' Theorem is valid. Use Stokes' Theorem to calculate the line integral Jos F.ds; as denotes the boundary of S. Explain your answer.arrow_forward(3) (16 points) Consider z = uv, u = x+y, v=x-y. (a) (4 points) Express z in the form z = fog where g: R² R² and f: R² → R. (b) (4 points) Use the chain rule to calculate Vz = (2, 2). Show all intermediate steps otherwise no credit. (c) (4 points) Let S be the surface parametrized by T(x, y) = (x, y, ƒ (g(x, y)) (x, y) = R². Give a parametric description of the tangent plane to S at the point p = T(x, y). (d) (4 points) Calculate the second Taylor polynomial Q(x, y) (i.e. the quadratic approximation) of F = (fog) at a point (a, b). Verify that Q(x,y) F(a+x,b+y). =arrow_forward(6) (8 points) Change the order of integration and evaluate (z +4ry)drdy . So S√ ² 0arrow_forward
- (10) (16 points) Let R>0. Consider the truncated sphere S given as x² + y² + (z = √15R)² = R², z ≥0. where F(x, y, z) = −yi + xj . (a) (8 points) Consider the vector field V (x, y, z) = (▼ × F)(x, y, z) Think of S as a hot-air balloon where the vector field V is the velocity vector field measuring the hot gasses escaping through the porous surface S. The flux of V across S gives the volume flow rate of the gasses through S. Calculate this flux. Hint: Parametrize the boundary OS. Then use Stokes' Theorem. (b) (8 points) Calculate the surface area of the balloon. To calculate the surface area, do the following: Translate the balloon surface S by the vector (-15)k. The translated surface, call it S+ is part of the sphere x² + y²+z² = R². Why do S and S+ have the same area? ⚫ Calculate the area of S+. What is the natural spherical parametrization of S+?arrow_forward(1) (8 points) Let c(t) = (et, et sint, et cost). Reparametrize c as a unit speed curve starting from the point (1,0,1).arrow_forward(9) (16 points) Let F(x, y, z) = (x² + y − 4)i + 3xyj + (2x2 +z²)k = - = (x²+y4,3xy, 2x2 + 2²). (a) (4 points) Calculate the divergence and curl of F. (b) (6 points) Find the flux of V x F across the surface S given by x² + y²+2² = 16, z ≥ 0. (c) (6 points) Find the flux of F across the boundary of the unit cube E = [0,1] × [0,1] x [0,1].arrow_forward
- (8) (12 points) (a) (8 points) Let C be the circle x² + y² = 4. Let F(x, y) = (2y + e²)i + (x + sin(y²))j. Evaluate the line integral JF. F.ds. Hint: First calculate V x F. (b) (4 points) Let S be the surface r² + y² + z² = 4, z ≤0. Calculate the flux integral √(V × F) F).dS. Justify your answer.arrow_forwardDetermine whether the Law of Sines or the Law of Cosines can be used to find another measure of the triangle. a = 13, b = 15, C = 68° Law of Sines Law of Cosines Then solve the triangle. (Round your answers to four decimal places.) C = 15.7449 A = 49.9288 B = 62.0712 × Need Help? Read It Watch Itarrow_forward(4) (10 points) Evaluate √(x² + y² + z²)¹⁄² exp[}(x² + y² + z²)²] dV where D is the region defined by 1< x² + y²+ z² ≤4 and √√3(x² + y²) ≤ z. Note: exp(x² + y²+ 2²)²] means el (x²+ y²+=²)²]¸arrow_forward
- (2) (12 points) Let f(x,y) = x²e¯. (a) (4 points) Calculate Vf. (b) (4 points) Given x directional derivative 0, find the line of vectors u = D₁f(x, y) = 0. (u1, 2) such that the - (c) (4 points) Let u= (1+3√3). Show that Duƒ(1, 0) = ¦|▼ƒ(1,0)| . What is the angle between Vf(1,0) and the vector u? Explain.arrow_forwardFind the missing values by solving the parallelogram shown in the figure. (The lengths of the diagonals are given by c and d. Round your answers to two decimal places.) a b 29 39 66.50 C 17.40 d 0 54.0 126° a Ꮎ b darrow_forwardAnswer the following questions related to the following matrix A = 3 ³).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning

Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell

Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning

Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill

Polynomials with Trigonometric Solutions (2 of 3: Substitute & solve); Author: Eddie Woo;https://www.youtube.com/watch?v=EnfhYp4o20w;License: Standard YouTube License, CC-BY
Quick Revision of Polynomials | Tricks to Solve Polynomials in Algebra | Maths Tricks | Letstute; Author: Let'stute;https://www.youtube.com/watch?v=YmDnGcol-gs;License: Standard YouTube License, CC-BY
Introduction to Polynomials; Author: Professor Dave Explains;https://www.youtube.com/watch?v=nPPNgin7W7Y;License: Standard Youtube License