Physics, Books a la Carte Plus Mastering Physics with Pearson eText -- Access Card Package (5th Edition)
5th Edition
ISBN: 9780134032610
Author: James S. Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 30, Problem 91GP
(a)
To determine
The strategy to calculate the work function and cutoff frequency of metal surface.
(b)
To determine
The number of photons enter each of eyes per second.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Asap plzzzzz
15
The photoelectric effect is the emission of electrons from a metal when light falls on it. The maximum kinetic energy of the electrons is the photon energy less the work function of the metal. A counter-electrode placed near the surface can pick up the photoelectric current. a) The work function of copper is 4.65 eV. Calculate the maximum kinetic energy in eV of the electrons if a copper surface is illuminated with 200 nm UV light b) If the counter-electrode is charged to +10 V, what will be the maximum kinetic energy of electrons arriving on it? What negative voltage would cut the photocurrent to zero?
Chapter 30 Solutions
Physics, Books a la Carte Plus Mastering Physics with Pearson eText -- Access Card Package (5th Edition)
Ch. 30.1 - Prob. 1EYUCh. 30.2 - Prob. 2EYUCh. 30.3 - Prob. 3EYUCh. 30.4 - Prob. 4EYUCh. 30.5 - Prob. 5EYUCh. 30.6 - Prob. 6EYUCh. 30.7 - Prob. 7EYUCh. 30 - Prob. 1CQCh. 30 - Prob. 2CQCh. 30 - Prob. 3CQ
Ch. 30 - Prob. 4CQCh. 30 - Prob. 5CQCh. 30 - Prob. 6CQCh. 30 - Prob. 7CQCh. 30 - Prob. 8CQCh. 30 - Prob. 9CQCh. 30 - Prob. 10CQCh. 30 - Prob. 1PCECh. 30 - Prob. 2PCECh. 30 - Prob. 3PCECh. 30 - The Sun has a surface temperature of about 5800 K....Ch. 30 - Prob. 5PCECh. 30 - Prob. 6PCECh. 30 - (a) By what factor does the peak frequency change...Ch. 30 - Prob. 8PCECh. 30 - Prob. 9PCECh. 30 - Prob. 10PCECh. 30 - Prob. 11PCECh. 30 - Prob. 12PCECh. 30 - Prob. 13PCECh. 30 - Prob. 14PCECh. 30 - Prob. 15PCECh. 30 - Prob. 16PCECh. 30 - Prob. 17PCECh. 30 - Prob. 18PCECh. 30 - Prob. 19PCECh. 30 - Prob. 20PCECh. 30 - Prob. 21PCECh. 30 - Prob. 22PCECh. 30 - Prob. 23PCECh. 30 - Prob. 24PCECh. 30 - Prob. 25PCECh. 30 - Prob. 26PCECh. 30 - Prob. 27PCECh. 30 - Prob. 28PCECh. 30 - Prob. 29PCECh. 30 - Prob. 30PCECh. 30 - Prob. 31PCECh. 30 - Prob. 32PCECh. 30 - Prob. 33PCECh. 30 - Prob. 34PCECh. 30 - Prob. 35PCECh. 30 - BIO Owl Vision Owls have large, sensitive eyes for...Ch. 30 - Prob. 37PCECh. 30 - Prob. 38PCECh. 30 - Prob. 39PCECh. 30 - Prob. 40PCECh. 30 - Prob. 41PCECh. 30 - Prob. 42PCECh. 30 - Prob. 43PCECh. 30 - Prob. 44PCECh. 30 - Prob. 45PCECh. 30 - Prob. 46PCECh. 30 - Prob. 47PCECh. 30 - Prob. 48PCECh. 30 - Prob. 49PCECh. 30 - Prob. 50PCECh. 30 - Prob. 51PCECh. 30 - Prob. 52PCECh. 30 - Prob. 53PCECh. 30 - Prob. 54PCECh. 30 - Prob. 55PCECh. 30 - Prob. 56PCECh. 30 - Prob. 57PCECh. 30 - Prob. 58PCECh. 30 - Prob. 59PCECh. 30 - Prob. 60PCECh. 30 - Prob. 61PCECh. 30 - Prob. 62PCECh. 30 - Prob. 63PCECh. 30 - Prob. 64PCECh. 30 - Prob. 65PCECh. 30 - Prob. 66PCECh. 30 - Prob. 67PCECh. 30 - Prob. 68PCECh. 30 - Prob. 69PCECh. 30 - Prob. 70PCECh. 30 - Prob. 71PCECh. 30 - Prob. 72PCECh. 30 - Prob. 73PCECh. 30 - Prob. 74PCECh. 30 - Prob. 75PCECh. 30 - Prob. 76PCECh. 30 - Prob. 77PCECh. 30 - Prob. 78PCECh. 30 - Prob. 79PCECh. 30 - Prob. 80GPCh. 30 - Prob. 81GPCh. 30 - Prob. 82GPCh. 30 - Prob. 83GPCh. 30 - Prob. 84GPCh. 30 - Prob. 85GPCh. 30 - Prob. 86GPCh. 30 - Prob. 87GPCh. 30 - Prob. 88GPCh. 30 - Prob. 89GPCh. 30 - Prob. 90GPCh. 30 - Prob. 91GPCh. 30 - Prob. 92GPCh. 30 - Prob. 93GPCh. 30 - Prob. 94GPCh. 30 - Prob. 95GPCh. 30 - Prob. 96GPCh. 30 - Prob. 97PPCh. 30 - Prob. 98PPCh. 30 - Prob. 99PPCh. 30 - Prob. 100PPCh. 30 - Prob. 101PPCh. 30 - Prob. 102PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) What is the shortest-wavelength x-ray radiation that can be generated in an x-ray tube with an applied voltage of 50.0 kV? (b) Calculate the photon energy in eV. (c) Explain the relationship of the photon energy to the applied voltage.arrow_forwardAn X-ray tube accelerates an electron with an applied voltage of 50 kV toward a metal target, (a) What is the shortest-wavelength X-ray radiation generated at the target? (b) Calculate the photon energy in eV. (c) Explain the relationship of the photon energy to the applied voltage.arrow_forwardThe momentum of light, as it is for particles, is exactly reversed when a photon is reflected straight back from a mirror, assuming negligible recoil of the mirror. The change in momentum is twice the photon’s incident momentum, as it is for the particles. Suppose that a beam of light has an intensity 1.0kW/m2 and falls on a -2.0-m2 area of a minor and reflects from it. (a) Calculate the energy reflected in 1.00 s. (b) What is the momentum imparted to the mirror? (c) Use Newton’s second law to find the force on the mirror. (d) Does the assumption of no-recoil for the mirror seem reasonable?arrow_forward
- Unreasonable Results A student in a physics laboratory observes a hydrogen spectrum with a diffraction grating for the purpose of measuring the wavelengths of the emitted radiation. In the spectrum, she observes a yellow line and finds its wavelength to be 589 nm. (a) Assuming this is part of the Balmer series, determine ni, the principal quantum number of the initial state. (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?arrow_forward7arrow_forwardIn a photoelectric-effect experiment conducted, it is observed that current only flows when light of wavelength which is less than 570 nm is being illuminated on metal A.i) Explain what will happen if light of wavelength above 570 nm is used.ii) Determine the work function of metal A.iii) Determine the stopping voltage required if light of wavelength 400 nm is used.arrow_forward
- When light with a wavelength of 204 nm is incident on a certain metal surface, electrons are ejected with a maximum kinetic energy of 2.92 × 10-19 J. Determine the wavelength (in nm) of light that should be used to double the maximum kinetic energy of the electrons ejected from this surface. Number i Unitsarrow_forwardLight Absorption (Photovoltaics / Mertens) 1. What is the photon energy of light at the wavelength λ = 560 nm in eV? (Planck's constant is 6.6 x 10-34 m2 kg / s) 2. What is the penetration depth of light at the wavelength λ = 560nm in c-Si (crystalline Si) and a-Si (amorphous Si)? 3. Light with a wavelength of 600 nm and an irradiance of E= 500 W/m 2 impinges vertically on to a semiconductor of amorphous silicon. At this wavelength the material has a refractive index of 4.6. a. What portion of the light is reflected at the semiconductor surface? b. What thickness and what refractive index should an anti-reflective film possess in an ideal case? Assume SiN is used as an anti-reflective film. What should the thickness of the film be in this case? (you need to look up the refractive index of SIN) 4. Given is a c-Si cell of thickness d = 140 micormeters that is illuminated by light with a strength of E= 1000 W/m 2 ,( a = 100/cm; n = 3.3; λ = 1000 nm). a. How large is the penetration depth…arrow_forward2. Light of frequency 7.60 x 10¹4 Hz ejects electrons from surface (A) with a maximum kinetic energy that is 1.40 x 10-19 J greater than the maximum kinetic energy of electrons ejected from surface B. Calculate the difference in work function for these two surfaces.arrow_forward
- In an experiment to demonstrate the photoelectric effect, physics students allow light of various frequencies to fall on a metal surface in a photocell. The photoelectrons are decelerated across a retarding voltage, and the stopping potential, Vs, is measured for each frequency. The data they obtained is graphed in the image attached. The students use the data points on the graph to determine a value for the work function of the metal.a) Determine the magnitude and the unit of the work function for this metal surface.b) What is the maximum kinetic energy (in eV) of the photoelectrons produced when ultraviolet light of frequency 1.93x1016 Hz is incident on the metal surface?arrow_forward2. Light of frequency 7.40 × 10¹4 Hz ejects electrons from surface (A) with a maximum kinetic energy that is -19 1.20 x 107 J greater than the maximum kinetic energy of electrons ejected from surface B. Calculate the difference in work function for these two surfaces. J ×60 S ssf60 ssfo SS €60 ssf603 ssf60 ssf F60 ss f60 ssf60 tengarrow_forwardWhich statement/s is/are true? I. White light is a mixture of all visible wavelengths II. An observer sees the color blue, because the object reflects only the blue color. III. Lower than 400 nm, is the UV region in the electromagnetic spectrum IV. Photons absorb or emit energy to or from another material causing transitions of energy levels in its molecule. I, II, III, and IV II, III, and IV I, II, and IV only I, III, and IVarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning