(a)
The average power delivered to the disk.
(a)
Answer to Problem 48CP
The average power delivered to the disk is
Explanation of Solution
Given info: Radius of disk is
Since the eddy currents occur as concentric circles with the disk. Consider the disk to be a collection of rings that each has an induced emf.
The emf induced in the disk can be given as,
Here,
Substitute
Here,
The elemental resistance around the ring can be given as,
Here,
Substitute
The power delivered to the elemental ring can be given as,
Substitute
The total power delivered to the disk can be given as,
Substitute
Substitute
Here,
Thus, the average power delivered to the disk can be given as
Conclusion:
Therefore, the average power delivered to the disk can be given as
(b)
The factor by which power will change when the field doubles.
(b)
Answer to Problem 48CP
The factor by which power will change when the field doubles is four times.
Explanation of Solution
Given info: Radius of disk is
The relation between the field and the power can be given from equation (1) as,
Substitute
Thus, the power will change by four times when the field doubles.
Conclusion:
Therefore, the factor by which power will change when the field doubles is four times.
(c)
The factor by which power will change when the frequency doubles.
(c)
Answer to Problem 48CP
The factor by which power will change when the frequency doubles is four times.
Explanation of Solution
Given info: Radius of disk is
The relation between the field and the power can be given from equation (1) as,
Substitute
Here,
Substitute
Thus, the power will change by four times when the frequency doubles.
Conclusion:
Therefore, the factor by which power will change when the frequency doubles is four times.
(d)
The factor by which power will change when the radius of the disk doubles.
(d)
Answer to Problem 48CP
The factor by which power will change when the radius of the disk doubles is sixteen times.
Explanation of Solution
Given info: Radius of disk is
The relation between the field and the power can be given from equation (1) as,
Substitute
Thus, the power will change by sixteen times when the radius of disk doubles.
Conclusion:
Therefore, the factor by which power will change when the radius of disk doubles is sixteen times.
Want to see more full solutions like this?
Chapter 30 Solutions
Bundle: Physics For Scientists And Engineers With Modern Physics, 10th + Webassign Printed Access Card For Serway/jewett's Physics For Scientists And Engineers, 10th, Multi-term
- 2 C01: Physical Quantities, Units and Measurementscobris alinu zotinUD TRO Bendemeer Secondary School Secondary Three Express Physics Chpt 1: Physical Quantities, Unit and Measurements Assignment Name: Chen ShiMan loov neowled soria 25 ( 03 ) Class: 3 Respect 6 Date: 2025.01.22 1 Which group consists only of scalar quantities? ABCD A acceleration, moment and energy store distance, temperature and time length, velocity and current mass, force and speed B D. B Which diagram represents the resultant vector of P and Q? lehtele 시 bas siqpeq olarist of beau eldeo qirie-of-qi P A C -B qadmis rle mengaib priwollot erT S Quilons of qira ono mont aboog eed indicator yh from West eril to Inioqbim srij enisinoo MA (6) 08 bas 8A aldao ni nolent or animaleb.gniweb slepe eld 260 km/h D 1 D. e 51arrow_forwardThe figure gives the acceleration a versus time t for a particle moving along an x axis. The a-axis scale is set by as = 12.0 m/s². At t = -2.0 s, the particle's velocity is 11.0 m/s. What is its velocity at t = 6.0 s? a (m/s²) as -2 0 2 t(s) 4arrow_forwardTwo solid cylindrical rods AB and BC are welded together at B and loaded as shown. Knowing that the average normal stress must not exceed 150 MPa in either rod, determine the smallest allowable values of the diameters d₁ and d2. Take P= 85 kN. P 125 kN B 125 kN C 0.9 m 1.2 m The smallest allowable value of the diameter d₁ is The smallest allowable value of the diameter d₂ is mm. mm.arrow_forward
- Westros, from Game of Thrones, has an area of approximately 6.73⋅106 miles26.73⋅106miles2. Convert the area of Westros to km2 where 1.00 mile = 1.609 km.arrow_forwarda) What is the lenght of x? b) Findθ c) Find ϕarrow_forwardA surveyor measures the distance across a straight river by the following method: Starting directly across from a tree on the opposite bank, he walks x = 97.7 m along the riverbank to establish a baseline. Then he sights across to the tree. The angle from his baseline to the tree is θ = 33.0 °. How wide is the river?arrow_forward
- A small turtle moves at a speed of 697. furlong/fortnight. Find the speed of the turtle in centimeters per second. Note that 1.00 furlong = 220. yards, 1.00 yard = 3.00 feet, 1.00 foot = 12.0 inches, 1.00 inch = 2.54 cm, and 1.00 fortnight = 14.0 days.arrow_forwardThe landmass of Sokovia lifted in the air in Avengers: Age of Ultron had a volume of about 1.98 km3. What volume is that in m3?arrow_forwardA fathom is a unit of length, usually reserved for measuring the depth of water. A fathom is exactly 6.00 ft in length. Take the distance from Earth to the Moon to be 252,000 miles, and use the given approximation to find the distance in fathoms. 1 mile = 5280 ft. (Answer in sig fig.)arrow_forward
- No chatgpt pls will upvotearrow_forwardOne of the earliest video games to have a plot, Zork, measured distances in “Bloits” where 1 Bloit was defined as the distance the king’s favorite pet could run in one hour, 1,090 m. In the same game the king has a statue made that is 9.00 Bloits high. What is this in meters?arrow_forwardNo chatgpt pls will upvotearrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning