
(a)
The average power delivered to the disk.
(a)

Answer to Problem 48CP
The average power delivered to the disk is
Explanation of Solution
Given info: Radius of disk is
Since the eddy currents occur as concentric circles with the disk. Consider the disk to be a collection of rings that each has an induced emf.
The emf induced in the disk can be given as,
Here,
Substitute
Here,
The elemental resistance around the ring can be given as,
Here,
Substitute
The power delivered to the elemental ring can be given as,
Substitute
The total power delivered to the disk can be given as,
Substitute
Substitute
Here,
Thus, the average power delivered to the disk can be given as
Conclusion:
Therefore, the average power delivered to the disk can be given as
(b)
The factor by which power will change when the field doubles.
(b)

Answer to Problem 48CP
The factor by which power will change when the field doubles is four times.
Explanation of Solution
Given info: Radius of disk is
The relation between the field and the power can be given from equation (1) as,
Substitute
Thus, the power will change by four times when the field doubles.
Conclusion:
Therefore, the factor by which power will change when the field doubles is four times.
(c)
The factor by which power will change when the frequency doubles.
(c)

Answer to Problem 48CP
The factor by which power will change when the frequency doubles is four times.
Explanation of Solution
Given info: Radius of disk is
The relation between the field and the power can be given from equation (1) as,
Substitute
Here,
Substitute
Thus, the power will change by four times when the frequency doubles.
Conclusion:
Therefore, the factor by which power will change when the frequency doubles is four times.
(d)
The factor by which power will change when the radius of the disk doubles.
(d)

Answer to Problem 48CP
The factor by which power will change when the radius of the disk doubles is sixteen times.
Explanation of Solution
Given info: Radius of disk is
The relation between the field and the power can be given from equation (1) as,
Substitute
Thus, the power will change by sixteen times when the radius of disk doubles.
Conclusion:
Therefore, the factor by which power will change when the radius of disk doubles is sixteen times.
Want to see more full solutions like this?
Chapter 30 Solutions
Physics for Scientists and Engineers with Modern Physics
- Complete the table below for spherical mirrors indicate if it is convex or concave. Draw the ray diagrams S1 10 30 S1' -20 20 f 15 -5 Marrow_forwardA particle with a charge of − 5.20 nC is moving in a uniform magnetic field of (B→=−( 1.22 T )k^. The magnetic force on the particle is measured to be(F→=−( 3.50×10−7 N )i^+( 7.60×10−7 N )j^. Calculate the scalar product v→F→. Work the problem out symbolically first, then plug in numbers after you've simplified the symbolic expression.arrow_forwardNeed help wity equilibrium qestionarrow_forward
- need answer asap please thanks youarrow_forwardA man slides two boxes up a slope. The two boxes A and B have a mass of 75 kg and 50 kg, respectively. (a) Draw the free body diagram (FBD) of the two crates. (b) Determine the tension in the cable that the man must exert to cause imminent movement from rest of the two boxes. Static friction coefficient USA = 0.25 HSB = 0.35 Kinetic friction coefficient HkA = 0.20 HkB = 0.25 M₁ = 75 kg MB = 50 kg P 35° Figure 3 B 200arrow_forwardA golf ball is struck with a velocity of 20 m/s at point A as shown below (Figure 4). (a) Determine the distance "d" and the time of flight from A to B; (b) Determine the magnitude and the direction of the speed at which the ball strikes the ground at B. 10° V₁ = 20m/s 35º Figure 4 d Barrow_forward
- The rectangular loop of wire shown in the figure (Figure 1) has a mass of 0.18 g per centimeter of length and is pivoted about side ab on a frictionless axis. The current in the wire is 8.5 A in the direction shown. Find the magnitude of the magnetic field parallel to the y-axis that will cause the loop to swing up until its plane makes an angle of 30.0 ∘ with the yz-plane. Find the direction of the magnetic field parallel to the y-axis that will cause the loop to swing up until its plane makes an angle of 30.0 ∘ with the yz-plane.arrow_forwardA particle with a charge of − 5.20 nC is moving in a uniform magnetic field of (B→=−( 1.22 T )k^. The magnetic force on the particle is measured to be (F→=−( 3.50×10−7 N )i^+( 7.60×10−7 N )j^. Calculate the y and z component of the velocity of the particle.arrow_forwardneed answer asap please thank youarrow_forward
- 3. a. Determine the potential difference between points A and B. b. Why does point A have a higher potential energy? Q = +1.0 C 3.2 cm 4.8 cm Aarrow_forwardPls help ASAParrow_forward1. Explain the difference between electrical field, potential difference, and electrical potential differencearrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





