A thin wire ℓ = 30.0 cm long is held parallel to and d = 80.0 cm above a long, thin wire carrying I = 200 A and fixed in position (Fig. P30.47). The 30.0-cm wire is released at the instant t = 0 and falls, remaining parallel to the current-carrying wire as it falls. Assume the falling wire accelerates at 9.80 m/s2. (a) Derive an equation for the emf induced in it as a function of time. (b) What is the minimum value of the emf? (c) What is the maximum value? (d) What is the induced emf 0.300 s after the wire is released?
Figure P30.47
(a)
The equation for the emf induced in the wire as a function of time.
Answer to Problem 47AP
The equation for emf induced in the wire as function of time is
Explanation of Solution
Given info: Length of wire is
The speed of the wire according to Newton’s law of motion can be given as,
Here,
Substitute
The distance covered by the wire can be given as,
Here,
Substitute
The total distance covered by wire can be given as,
Here,
Substitute
The magnetic field at a distance
Here,
The emf induced in the wire can be given as,
Here,
Substitute
Substitute
Conclusion:
Therefore, the equation for emf induced in the wire as function of time is
(b)
The minimum value of the emf.
Answer to Problem 47AP
The minimum value of emf is
Explanation of Solution
Given info: Length of wire is
The expression for emf can be given as in equation (1),
At
Conclusion:
Therefore, the minimum value of emf is
(c)
The maximum value of emf.
Answer to Problem 47AP
The maximum value of emf is infinity.
Explanation of Solution
Given info: Length of wire is
The expression for emf can be given as in equation (1),
From the above equation, at
Conclusion:
Therefore, the minimum value of emf is
(d)
The induced emf
Answer to Problem 47AP
The induced emf
Explanation of Solution
Given info: Length of wire is
The expression for emf can be given as in equation (1),
Substitute
Conclusion:
Therefore, the induced emf
Want to see more full solutions like this?
Chapter 30 Solutions
Physics for Scientists and Engineers with Modern Physics
Additional Science Textbook Solutions
College Physics: A Strategic Approach (3rd Edition)
HUMAN ANATOMY
Cosmic Perspective Fundamentals
Essentials of Human Anatomy & Physiology (12th Edition)
Fundamentals of Anatomy & Physiology (11th Edition)
- Part C Find the height yi from which the rock was launched. Express your answer in meters to three significant figures. Learning Goal: To practice Problem-Solving Strategy 4.1 for projectile motion problems. A rock thrown with speed 12.0 m/s and launch angle 30.0 ∘ (above the horizontal) travels a horizontal distance of d = 19.0 m before hitting the ground. From what height was the rock thrown? Use the value g = 9.800 m/s2 for the free-fall acceleration. PROBLEM-SOLVING STRATEGY 4.1 Projectile motion problems MODEL: Is it reasonable to ignore air resistance? If so, use the projectile motion model. VISUALIZE: Establish a coordinate system with the x-axis horizontal and the y-axis vertical. Define symbols and identify what the problem is trying to find. For a launch at angle θ, the initial velocity components are vix=v0cosθ and viy=v0sinθ. SOLVE: The acceleration is known: ax=0 and ay=−g. Thus, the problem becomes one of…arrow_forwardPhys 25arrow_forwardPhys 22arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill