Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 30, Problem 46P
(a)
To determine
The percent of the incoming current passing through the capacitor
(b)
To determine
The percent of the incoming current passing through the capacitor
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(I) At what frequency will a 2.40μF capacitor have a reactance of 6.10 KΩ ?
(I) An ac voltage, whose peak value is 180 V, is across a
330-N resistor. What are the rms and peak currents in the
resistor?
(II) A 3.5 kΩ resistor and a 3.0μ F capacitor are connectedin series to an ac source. Calculate the impedance of thecircuit if the source frequency is (a) 60 Hz, and (b) 60,000 Hz.
Chapter 30 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 30.1 - Prob. 1AECh. 30.1 - Prob. 1BECh. 30.3 - Prob. 1CECh. 30.4 - Show that L/R does have dimensions of lime. (See...Ch. 30.4 - Prob. 1EECh. 30.5 - Return to the Chapter-Opening Question, page 785,...Ch. 30.7 - At what frequency is the reactance of a 1.0-F...Ch. 30.7 - Prob. 1HECh. 30 - Prob. 1QCh. 30 - Prob. 2Q
Ch. 30 - Prob. 3QCh. 30 - Prob. 4QCh. 30 - If you are given a fixed length of wire, how would...Ch. 30 - Prob. 6QCh. 30 - Prob. 7QCh. 30 - Prob. 8QCh. 30 - What keeps an LC circuit oscillating even after...Ch. 30 - Is the ac current in the indicator always the same...Ch. 30 - Prob. 11QCh. 30 - In an ac LRC circuit, if XL XC, the circuit is...Ch. 30 - Prob. 13QCh. 30 - Under what conditions is the impedance in an LRC...Ch. 30 - Is it possible for the instantaneous power output...Ch. 30 - In an ac LRC circuit, does the power factor, cos,...Ch. 30 - Describe briefly how the frequency of the source...Ch. 30 - Prob. 18QCh. 30 - In an LRC circuit, the current and the voltage in...Ch. 30 - Compare the oscillations or an LRC circuit to the...Ch. 30 - Prob. 1PCh. 30 - Prob. 2PCh. 30 - Prob. 3PCh. 30 - Prob. 4PCh. 30 - (I) If the current in a 280-mH coil changes...Ch. 30 - Prob. 6PCh. 30 - Prob. 7PCh. 30 - Prob. 8PCh. 30 - Prob. 9PCh. 30 - (II) If the outer conductor of a coaxial cable has...Ch. 30 - Prob. 11PCh. 30 - Prob. 12PCh. 30 - Prob. 13PCh. 30 - (II) Ignoring any mutual inductance, what is the...Ch. 30 - (I) The magnetic field inside an air-filled...Ch. 30 - (I) Typical large values for electric and magnetic...Ch. 30 - (II) What is the energy density at the center of a...Ch. 30 - (II) Calculate the magnetic and electric energy...Ch. 30 - Prob. 19PCh. 30 - (II) Determine the total energy stored per unit...Ch. 30 - (II) Determine the total energy stored per unit...Ch. 30 - Prob. 22PCh. 30 - (II) How many time constants does it take for the...Ch. 30 - (II) It takes 2.56 ms for the current in an LR...Ch. 30 - Prob. 25PCh. 30 - (II) In the circuit of Fig. 3027, determine the...Ch. 30 - Prob. 27PCh. 30 - Prob. 28PCh. 30 - (II) A 12-V battery has been connected to an LR...Ch. 30 - Prob. 30PCh. 30 - (I) The variable capacitor in the tuner of an AM...Ch. 30 - Prob. 32PCh. 30 - (II) In some experiments, short distances are...Ch. 30 - Prob. 34PCh. 30 - Prob. 35PCh. 30 - Prob. 36PCh. 30 - Prob. 37PCh. 30 - Prob. 38PCh. 30 - (I) At what frequency will a 32.0-mH inductor have...Ch. 30 - (I) What is the reactance of a 9.2-F capacitor at...Ch. 30 - (I) Plot a graph of the reactance of a 1.0-F...Ch. 30 - (I) Calculate the reactance of, and rms current...Ch. 30 - (II) A resistor R is in parallel with a capacitor...Ch. 30 - Prob. 44PCh. 30 - (II) (a) What is the reactance of a 0.086-F...Ch. 30 - Prob. 46PCh. 30 - (II) A current I = 1.80 cos 377t (I in amps, t in...Ch. 30 - (I) A 10.0-k resistor is in series with a 26.0-mH...Ch. 30 - (I) A 75- resistor and a 6.8-F capacitor are...Ch. 30 - (I) For a 120-V, 60-Hz voltage, a current of 70 mA...Ch. 30 - (II) A 2.5-k resistor in series with a 420-mH...Ch. 30 - (II) (a) What is the rms current in a series RC...Ch. 30 - (II) An ac voltage source is connected in series...Ch. 30 - (II) Determine the total impedance, phase angle,...Ch. 30 - (II) (a) What is the rms current in a series LR...Ch. 30 - (II) A 35-mH inductor with 2.0- resistance is...Ch. 30 - (II) A 25-mH coil whose resistance is 0.80 is...Ch. 30 - (II) A 75-W lightbulb is designed to operate with...Ch. 30 - (II) In the LRC circuit or Fig. 3019, suppose I =...Ch. 30 - (II) An LRC series circuit with R = 150 , L = 25...Ch. 30 - (II) An LR circuit can be used as a phase shifter....Ch. 30 - (I) A 3800-pF capacitor is connected in series to...Ch. 30 - (I) What is the resonant frequency of the LRC...Ch. 30 - (II) An LRC circuit has L = 4.15 mH and R = 3.80...Ch. 30 - (II) The frequency of the ac voltage source (peak...Ch. 30 - (II) Capacitors made from piezoelectric materials...Ch. 30 - (II) (a) Determine a formula for the average power...Ch. 30 - (II) (a) Show that oscillation of charge Q on the...Ch. 30 - (II) A resonant circuit using a 220-nF capacitor...Ch. 30 - Prob. 70PCh. 30 - Prob. 71GPCh. 30 - Prob. 72GPCh. 30 - At time t = 0, the switch in the circuit shown in...Ch. 30 - Prob. 74GPCh. 30 - Prob. 75GPCh. 30 - Assuming the Earths magnetic field averages about...Ch. 30 - (a) For an underdamped LRC circuit, determine a...Ch. 30 - An electronic device needs to be protected against...Ch. 30 - Prob. 79GPCh. 30 - Prob. 80GPCh. 30 - An ac voltage source V=V0sin(t+90) is connected...Ch. 30 - A circuit contains two elements, but it is not...Ch. 30 - A 3.5-k resistor in series with a 440-mH inductor...Ch. 30 - (a) What is the rms current in on RC circuit if R...Ch. 30 - An inductance coil draws 2.5 A de when connected...Ch. 30 - The Q-value of a resonance circuit can be defined...Ch. 30 - Show that the fraction of electromagnetic energy...Ch. 30 - In a series LRC circuit, the inductance is 33mH,...Ch. 30 - Prob. 89GPCh. 30 - A voltage V = 0.95 sin 754t is applied to an LRC...Ch. 30 - Filler circuit. Figure 3033 shows a simple filler...Ch. 30 - Show that if the inductor L in the filter circuit...Ch. 30 - A resistor R, capacitor C, and inductor L are...Ch. 30 - Suppose a series LRC circuit has two resisiors, R1...Ch. 30 - Prob. 95GPCh. 30 - Prob. 96GPCh. 30 - You have a small electromagnet that consumes 350 W...Ch. 30 - An inductor L in series with a resistor R, driven...Ch. 30 - In a certain LRC series circuit, when the ac...Ch. 30 - Prob. 100GPCh. 30 - Prob. 101GPCh. 30 - For the circuit shown in Fig. 3038, show that if...Ch. 30 - (II) The RC circuit shown in Fig. 3039 is called a...Ch. 30 - (II) The RC circuit shown in Fig. 3040 is called a...Ch. 30 - (III) Write a computer program or use a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (c) The phasor diagram in Figure 3 shows the values of currents flowing through a parallel network of components connected across a 240 V/50HZ RMS supply. lc= 10 A IR=15 A VT IT L = 15 A Figure 3: Phasor diagram of a parallel RLC circuit Given: Ic 10A, IR = 15A, IL = 15A, V = 240V and f= 50 Hz, Calculate to 2dp: The total current flow through the cireuit Induetive reactance (i) (ii) (ii) (iv) Inductance of the coil Phase angle of the current waveform relative to the voltage waveform arks) (v) Power consumption of the circuitarrow_forward(b) An AC voltage source of V = 310 sin (25nt) is connected to a 140 N resistor, where V is in Volts and t is in seconds. Calculate the rms current across the resistor. Satu sumber voltan ulang-alik V = 310 sin (25nt) disambunakan dengan perintang 140 n di mana V adalah dalam voltan dan t adalah dalam saat. Hitung arus rms merentasi perintang |A (c) A series circuit contains a resistor R with resistance of 31 0, an inductor L of 115.75 mH with inductive reactance of 40 n and a capacitor C of 22.79 µF with capacitive reactance of 127 N. The circuit is connected to a rms voltage supply of 23 V with 55 Hz frequency. Satu litar sesiri mengandungi satu perintang R dengan kerintangan 31 0, satu induktor L 115.75 mH dengan kereaktifan induktif 40 n dan satu kapasitor C 22.79 µF dengan kereaktifan kapasitif 40 n. Litar tersebut disambungkan ke sumber voltan rms 23 V dengan frekuensi 23 Hz. (i) Calculate the impedance of the circuit. Hitung impedans litar. (ii) Find the frequency when the…arrow_forward(II) The peak value of an alternating current in a 1500-Wdevice is 6.4 A. What is the rms voltage across it?arrow_forward
- (II) It takes 2.56 ms for the current in an LR circuit toincrease from zero to 0.75 its maximum value. Determine(a) the time constant of the circuit, (b) the resistance of thecircuit if L=31.0 mHarrow_forward(II) A heater coil connected to a 240Vrms ac line has aresistance of 38 Ω (a) What is the average power used?(b) What are the maximum and minimum values of theinstantaneous power?arrow_forward(b) An AC voltage source of V = 310 sin (25nt) is connected to a 140Q resistor, where V is in Volts and t is in seconds. Calculate the rms current across the resistor. Satu sumber voltan ulang-alik V = 310 sin (25nt) disambungkan dengan perintang 140 N di mana V adalah dalam voltan dan t adalah dalam saat. Hitung arus r.arrow_forward
- (III) (a) What is the rms current in an RC circuit if R= 6.60 KΩ and C= 1.80μF and the rms applied voltage is 120 V at 60.0 Hz? (b) What is the phase angle between voltage and current? (c) What are the voltmeter readingsacross R and C?arrow_forward(a) At what two times in the first period following t=0 does the instantaneous voltage in 60-Hz AC equal Vrms ?(b) -Vrms ?arrow_forward(III) (a) What is the rms current in an LR circuit when a60.0-Hz 120-V rms ac voltage is applied, where R=2.80kΩand L= 3.50mH? (b) What is the phase angle betweenvoltage and current? (c) How much power is dissipated?(d) What are the rms voltage readings across R and L?arrow_forward
- (I) A 3500-pF capacitor is connected in series to a 55.0 μHcoil of resistance 4.00Ω What is the resonant frequency ofthis circuit?arrow_forward(b) An AC voltage source of V = 310 sin (25nt) is connected to a 1400 resistor, where V is in Volts and t is in seconds. Calculate the rms current across the resistor. Satu sumber voltan ulang-alik V = 310 sin (25nt) disambungkan dengan perintang 140 N di mana V adalah dalam voltan dan t adalah dalam saat. Hitung arus rms merentasi perintang. [2 markah] A (c) A series circuit contains a resistor R with resistance of 31 N, an inductor L of 115.75 mH with inductive reactance of 40 N and a capacitor C of 22.79 µF with capacitive reactance of 127 N. The circuit is connected to a rms voltage supply of 23 V with 55 Hz frequency. Satu litar sesiri mengandungi satu perintang R dengan kerintangan 31 N, satu induktor L 115.75 mH dengan kereaktifan induktif 40 Q dan satu kapasitor C 22.79 µF dengan kereaktifan kapasitif 40 Q. Litar tersebut disambungkan ke sumber voltan rms 23 V dengan frekuensi 23 Hz. (i) Calculate the impedance of the circuit. Hitung impedans litar. Ω (ii) Find the frequency…arrow_forward(f) A capacitor C of 50uF and a resistor R of 820 are connected across an AC source as shown in Figure 3, where v,(t) (400)sin (100t + 60°) V. R. VR Vc Is Vs Figure 3 (i) Calculate the supply current Is in polar form (RMS). (ii) Determine the voltage drop across R VR in polar form. (ii) Calculate the voltage drop across C Vc in polar form. (iv) Draw a phasor diagram showing the supply voltage Vs, the supply current Is, the voltage across R VR, and the voltage across C Vc. (v) Calculate the circuit power factor from the phasor diagram.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill