PHY F/SCIENTIST MOD MASTERING 24 MO
17th Edition
ISBN: 9780137319497
Author: Knight
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 30, Problem 17EAP
A
a. Find an expression for the induced current I(t) as a function of time.
b. Evaluate I at
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A. 0.0155 T/s
B. 0.0996 T/s
C. 0.228 T/s
D. 0.757 T/s
E. 1.52 T/s
c. What is the resistance of the coil given that the diameter of the wire is 2.00 mm? (Recall, resistance of wire is given by R = ρL/A, where ρ is the resistivity of the metal, L is the length of the wire, and A is the cross-sectional area.)
A coil of wire with 130 turns and a cross-sectional area of 0.04 m^2 lies with its plane perpendicular to a magnetic field of magnitude 1.5 T. The coil is rapidly removed from the magnetic field in a time of 0.2 s.
a. What is the initial magnetic flux through the coil?
b. What is the average value of the voltage induced in the coil?
Chapter 30 Solutions
PHY F/SCIENTIST MOD MASTERING 24 MO
Ch. 30 - Prob. 1CQCh. 30 - You want to insert a loop of copper wire between...Ch. 30 - A vertical, rectangular loop of copper wire is...Ch. 30 - Does the loop of wire in FIGURE Q30.4 have a...Ch. 30 - s5. The two loops of wire in FIGURE Q30.5 are...Ch. 30 - FIGURE Q30.6 shows a bar magnet being pushed...Ch. 30 - A bar magnet is pushed toward a loop of wire as...Ch. 30 - FIGURE Q30.8 shows a bar magnet. a coil of wire,...Ch. 30 - Prob. 9CQCh. 30 - An inductor with a 2.0 A current stores energy. At...
Ch. 30 - Prob. 11CQCh. 30 - Prob. 12CQCh. 30 - Rank in order, from largest to smallest, the three...Ch. 30 - For the circuit of FIGURE Q30.14: a. What is the...Ch. 30 - The earth’s magnetic field strength is 5.0105T ....Ch. 30 - A potential difference of 0.050 V is developed...Ch. 30 - A 10 -cm-long wire is pulled along a U-shaped...Ch. 30 - What is the magnetic flux through the loop shown...Ch. 30 - FIGURE EX30.5 shows a 10cm10cm square bent at a 90...Ch. 30 - Prob. 6EAPCh. 30 - Prob. 7EAPCh. 30 - FIGURE EX30.8 shows a 2.0 -cm-diameter solenoid...Ch. 30 - Prob. 9EAPCh. 30 - 10. A solenoid is wound as shown in FIGURE...Ch. 30 - 11. The metal equilateral triangle in FIGURE...Ch. 30 - The current in the solenoid of FIGURE EX3O.12 is...Ch. 30 - The loop in FIGURE EX30.13 is being pushed into...Ch. 30 - FIGURE EX30.14 shows a 10-cm-diameter loop in...Ch. 30 - Prob. 15EAPCh. 30 - 16. A -turn coil of wire cm in diameter is in a...Ch. 30 - A 5.0 -cm-diameter coil has 20 turns and a...Ch. 30 - FIGURE EX30.18 shows the current as a function of...Ch. 30 - The magnetic field in FIGURE EX30.19 is decreasing...Ch. 30 - The magnetic field inside a -cm-diameter solenoid...Ch. 30 - Scientists studying an anomalous magnetic field...Ch. 30 - Prob. 22EAPCh. 30 - Prob. 23EAPCh. 30 - Prob. 24EAPCh. 30 - Prob. 25EAPCh. 30 - Prob. 26EAPCh. 30 - How much energy is stored in a -cm-diameter,...Ch. 30 - MRI (magnetic resonance imaging) is a medical...Ch. 30 - Prob. 29EAPCh. 30 - Prob. 30EAPCh. 30 - Prob. 31EAPCh. 30 - Prob. 32EAPCh. 30 - Prob. 33EAPCh. 30 - Prob. 34EAPCh. 30 - At t=0 s, the current in the circuit in FIGURE...Ch. 30 - The switch in FIGURE EX3O.36 has been open for a...Ch. 30 - Prob. 37EAPCh. 30 - Prob. 38EAPCh. 30 - Prob. 39EAPCh. 30 - Prob. 40EAPCh. 30 - A 10cm10cm square loop lies in the xy-plane. The...Ch. 30 - A spherical balloon with a volume of L is in a mT...Ch. 30 - Prob. 43EAPCh. 30 - Prob. 44EAPCh. 30 - Prob. 45EAPCh. 30 - FIGURE P30.46 shows a 4.0-cm-diameter loop with...Ch. 30 - Prob. 47EAPCh. 30 - Prob. 48EAPCh. 30 - Prob. 49EAPCh. 30 - Prob. 50EAPCh. 30 - Prob. 51EAPCh. 30 - Prob. 52EAPCh. 30 - Prob. 53EAPCh. 30 - Prob. 54EAPCh. 30 - Prob. 55EAPCh. 30 - Your camping buddy has an idea for a light to go...Ch. 30 - 57. The -wide, zero-resistance slide wire shown...Ch. 30 - ]58. You’ve decided to make the magnetic...Ch. 30 - FIGURE P30.59 shows a U-shaped conducting rail...Ch. 30 - Prob. 60EAPCh. 30 - Prob. 61EAPCh. 30 - Prob. 62EAPCh. 30 - Equation 30.26 is an expression for the induced...Ch. 30 - Prob. 64EAPCh. 30 - One possible concern with MRI (see Exercise 28) is...Ch. 30 - FIGURE P30.66 shows the current through a 10mH...Ch. 30 - Prob. 67EAPCh. 30 - Prob. 68EAPCh. 30 - Prob. 69EAPCh. 30 - Prob. 70EAPCh. 30 - An LC circuit is built with a inductor and an...Ch. 30 - Prob. 72EAPCh. 30 - For your final exam in electronics, you’re asked...Ch. 30 - The inductor in FIGURE P30.74 is a -cm-long, -cm-...Ch. 30 - The capacitor in FIGURE P30.75 is initially...Ch. 30 - The switch in FIGURE P30.76 has been open for a...Ch. 30 - 77. The switch in FIGURE P30.77 has been open for...Ch. 30 - Prob. 78EAPCh. 30 - Prob. 79EAPCh. 30 - Prob. 80EAPCh. 30 - In recent years it has been possible to buy a 1.0F...Ch. 30 - Prob. 82EAPCh. 30 - Prob. 83EAPCh. 30 - Prob. 84EAPCh. 30 - A 2.0 -cm-diameter solenoid is wrapped with 1000...Ch. 30 - High-frequency signals are often transmitted along...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The square armature coil of an alternating current generator has 200 turns and is 20.0 cm on side. When it rotates at 3600 rpm, its peak output voltage is 120 V. (a) Wliat is the frequency' of the output voltage? (b) What is the strength of the magnetic field in which the coil is turning?arrow_forward(a) If the emf of a coil rotating in a magnetic field is zero at t = 0, and increases to its first peak at t = 0.100 ms, what is the angular velocity of the coil? (b) At what time will its next maximum occur? (c) What is the period of the output? (d) When is the output first one-fourth at its maximum? (e) When is it next one-fourth at its maximum?arrow_forwardReview. In Figure P30.42, a uniform magnetic field decreases at a constant rate dB/dt = K, where K is a positive constant. A circular loop of wire of radius a containing a resistance R and a capacitance C is placed with its plane normal to the field. (a) Find the charge Q on the capacitor when it is fully charged. (b) Which plate, upper or lower, is at the higher potential? (c) Discuss the force that causes the separation of charges. Figure P30.42arrow_forward
- Unreasonable results Frustrated by the small Hall voltage obtained in blood flow measurements, a medical physicist decides to increase the applied magnetic field strength to get a 0.500-V output for blood moving at 30.0 cm/s in a 1.50-cm-diameter vessel. (a) What magnetic field strength is needed? (b) What is unreasonable about this result? (C) Which premise is responsible?arrow_forward(a) A nonferrous screwdriver is being used in a 2.00 T magnetic field. What maximum emf can be induced along its 12.0 cm length when it moves at 6.00 m/s? (b) Is it likely that this emf will have any consequences or even be noticed?arrow_forwardA The magnetic field in a region of space is given by B=Bx+Byj. A coil of N turns is oriented so that its cross-sectional area is in the x direction: A=Ax. A small bulb is connected across the ends of the coil. The total resistance of the coil and the bulb is R. Find an expression for the current through the bulb if Bx(t) = B0(t/t0)2 and By = B0, where B0 and t0 are constants.arrow_forward
- A 15-turn circular coil has radius of r = 2 [cm] and a resistance of R = 10 [0]. The coil is in a uniform magnetic field of 0.99 [T] that is perpendicular to the plane of the coil. a. flux? What is the value of the magnetic b. emf and the induced current in the coil? lemf| [V] I = What is the value of the induced C. _ emf? |emf] = [A] Now, the value of the magnetic field is increasing from 0.99 [T] to 2.6 [T] in At = 1.6 [s]. : What is the value of the induced [V] What is the value of the induced d.. current in the coil? I = [A]arrow_forwardA coil 30 cm in diameter consist of 20 turns of circular copper wire 2 mm in diameter. The coil is connected to a low resistance galvanometer. Initially coil is placed in a uniform magnetic field perpendicular to its plane. During the experiment the magnetic field changes from 0.5 T to 2.5 T in 0.4 s. Ignore the resistance of the connecting wires. a. Calculate the initial flux in the coil. (copper resistivity Ω·m) Round to two decimal places.TOPIC: Electromagnetic Inductionarrow_forwardShown is a 15-cm-long metal rod pulled along two frictionless, conducting rails at a constant speed of 3.5 m/s. The rails have negligible resistance, but the rod has a resistance of 0.65 Ω.a. What is the current induced in the rod?b. What force is required to keep the rod moving at a constant speed?arrow_forward
- A 40 turn circular coil (radius = 4.0 cm, total resistance = 0.20 N) is placed in a uniform magnetic field directed perpendicular to the plane of the coil. The magnitude of the magnetic field varies with time as given by B = 94 sin(10 Tt) mT where t is measured in s. What is the magnitude of the induced current in the coil at 0.07 s? O a. 3.02 A O b. 1.48 A O c. 1.74 A O d. 0 A O e. 2.40 Aarrow_forwardAssume that the magnet has a magnetic moment of μ = 0.39 A. m². The magnet is moving toward the coil that has N = 309 turns and radius r = 9 cm. a. Find the change in magnetic field of the magnet when the magnet moves from 1 cm to 6 cm from the center of coil. ΔΒ [T] b. What is the induced emf if this change happens in 0.2 s? em f [V] c. What is the induced current if the resistance of the coil is R = 902? i [A] d. What is the magnitude of ENC? ENC [V/m] Oarrow_forwardA 25-turn circular coil has radius of r = 3 [cm] and a resistance of R = 10 [Q]. The coil is in a uniform magnetic field of 0.46 [T] that is perpendicular to the plane of the coil. a. magnetic flux? What is the value of the b. What is the value of the induced emf and the induced current in the coil? lemf| = [V] I = [A] Now, the value of the magnetic field is increasing from 0.46 [T] to 2.1 [T] in At = 1.4 [s]. C. emf? lemf| I = What is the value of the induced [V] d. current in the coil? [A] What is the value of the inducedarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY