Concept explainers
(a)
The speed and magnitude of the acceleration of a person standing on the equator.
(a)
Answer to Problem 67P
A person standing on the equator has a speed
Explanation of Solution
Given:
Time taken by the Earth to rotate once on its axis,
Radius of the Earth,
Formula used:
The speed
The person on the equator experiences a centripetal acceleration
The total acceleration at the equator is given by,
Calculation:
A person standing on the equator, revolves in a circular path of radius
Calculate speed
All particles fixed on the Earth experience a centripetal force directed towards the center of its circular path. Hence it would experience a centripetal acceleration towards the center of its circular path.
Calculate the centripetal acceleration
Express the acceleration as a percentage of
The total acceleration experienced by the person is given by equation (3).
Conclusion:
Thus, a person standing on the equator has a speed
(b)
The direction of the acceleration vector of the person on the equator.
(b)
Answer to Problem 67P
The acceleration vector of the person is directed towards the center of the Earth.
Explanation of Solution
Introduction:
A person on the surface of the Earth experiences two forces-(i) Gravitational force
An object in order to move in a circular path requires
Figure 1
However, the weight, as felt by the person on the surface of the earth, is equal to the Normal force he experiences.
Hence, the acceleration
Conclusion:
Thus, the acceleration vector of the person on the Equator is directed towards the center of the Earth.
(c)
The speed and magnitude of the acceleration of a person standing at
(c)
Answer to Problem 67P
The speed of the person at
Explanation of Solution
Given:
The latitude where the person was standing,
Radius of the earth at equator,
The speed of the person at equator,
The centripetal acceleration at the equator,
Formula used:
The person at
The speed of person at
His speed at equator is given by
From equations (4) and (5),
The centripetal acceleration at the equator is given by the expression,
The centripetal acceleration at
From equations (4) and (5),
The person also experiences acceleration
The magnitude of the resultant acceleration is determined by using parallelogram law of vectors.
Calculation:
The motion of the person at
Figure 2
From Figure 2, it can be seen that
Use equation (11) in equation (6).
Substitute the value of the variables in the above equation.
Use equation (11) in equation (9) and substitute the values of the variables to calculate the value of
The vector
Substitute the values of variables in equation (10) and calculate the magnitude of the resultant acceleration
Conclusion:
Thus, the speed of the person at
(d)
The angle between the direction of the acceleration at
(d)
Answer to Problem 67P
The angle between the direction of the acceleration at
Explanation of Solution
Given:
The magnitude of centripetal acceleration at
The value of acceleration of free fall,
The latitude where the person was standing,
Formula used:
The direction of the acceleration at the equator is along the horizontal direction parallel to the direction of the centripetal acceleration at
Hence the angle
The vector diagram representing the accelerations is shown below:
Figure 3
This is given by
Calculation:
Substitute the values of the variables in equation (12).
Conclusion:
Thus, the angle between the direction of the acceleration at
Want to see more full solutions like this?
Chapter 3 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- y[m] The figure shows two snapshots of a single wave on a string. The wave is traveling to the right in the +x direction. The solid line is a snapshot of the wave at time t=0 s, while the dashed line is a snapshot of the wave at t=0.48s. 0 0.75 1.5 2.25 3 8 8 6 6 4 2 4 2 0 -2 -2 -4 -4 -6 -6 -8 -8 0 0.75 1.5 2.25 3 x[m] Determine the period of the wave in units of seconds. Enter your numerical answer below including at least 3 significant figures. Do not enter a fraction, do not use scientific notation.arrow_forwardNo chatgpt pls will upvotearrow_forwardAn extremely long, solid nonconducting cylinder has a radius Ro. The charge density within the cylinder is a function of the distance R from the axis, given by PE (R) = po(R/Ro)², po > 0.arrow_forward
- An extremely long, solid nonconducting cylinder has a radius Ro. The charge density within the cylinder is a function of the distance R from the axis, given by PE (R) = po(R/Ro)², po > 0.arrow_forwardA sky diver of mass 90 kg (with suit and gear) is falling at terminal speed. What is the upward force of air drag, and how do you know?arrow_forwardA car is traveling at top speed on the Bonneville salt flats while attempting a land speed record. The tires exert 25 kN of force in the backward direction on the ground. Why backwards? How large are the forces resisting the forward motion of the car, and why?arrow_forward
- Please help by: Use a free body diagram Show the equations State your assumptions Show your steps Box your final answer Thanks!arrow_forwardPlease help by: Use a free body diagram Show the equations State your assumptions Show your steps Box your final answer Thanks!arrow_forwardBy please don't use Chatgpt will upvote and give handwritten solutionarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning