Concept explainers
(a)
To Find:The range of a ball thrown horizontally while standing on level ground.
(a)
Answer to Problem 36P
Explanation of Solution
Given data:
The ball is thrown horizontally.
Formula used:
Second equation of motion:
Calculation:
Applying
Applying
Substituting value of t in
Assume that the person can throw the ball at 60 mph.
Assume that the person releases the ball from a height of 2 m.
Substituting the values for v and h
Conclusion:
Thus, the range of a ball thrown horizontally while standing on level ground =
(b)
To Find:The range of a ball thrown at an angle 45° above the horizontal while standing on level ground
(b)
Answer to Problem 36P
Explanation of Solution
Given data:
The ball is thrown at an angle 45° above the horizontal.
Formula used:
Calculation:
Assume that the person can throw the ball at 60 mph.
Assume that the person releases the ball from a height of 2 m.
Let the angle of release of the ball from the horizontalbe
Applying
Applying
Substituting value of t in
Solving for R
There are 2 values for R. Taking the larger value,
Substituting values for v, h,
Conclusion:
The range of a ball thrown at an angle 45° above the horizontal =
(c)
The range of a ball thrown horizontallyfrom the top of a building
(c)
Answer to Problem 36P
The range of a ball thrown horizontally from the top of a building =
Explanation of Solution
Given data:
The ball is thrown horizontallyfrom the top of a building
Formula used:
Calculation:
Assume that the person can throw the ball at 60 mph.
Assume that the person releases the ball from a height of 2 m.
Applying
Applying
Substituting value of t in
Substituting values for v, h,and g
Conclusion:
The range of a ball thrown horizontally from the top of a building =
(d)
The range of a ball thrown at an angle 45° above the horizontal from the top of a building 12 m high
(d)
Answer to Problem 36P
The range of a ball thrown at an angle 45° above the horizontal from the top of a building 12 m high =
Explanation of Solution
Given data
The ball is thrown at an angle 45° above the horizontal from the top of a building 12 m high.
Formula used
Calculation
Assume that the person can throw the ball at 60 mph.
Assume that the person releases the ball from a height of 2 m.
Let the angle of release of the ball from the horizontalbe
Applying
Applying
Substituting value of t in
Solving for R
There are 2 values for R. Taking the larger value,
Substituting values for v, h,
Conclusion
The range of a ball thrown at an angle 45° above the horizontal from the top of a building 12 m high =
Want to see more full solutions like this?
Chapter 3 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- Please solve and answer this problem correctly please. Thank you!!arrow_forwarda) Use the node-voltage method to find v1, v2, and v3 in the circuit in Fig. P4.14. b) How much power does the 40 V voltage source deliver to the circuit? Figure P4.14 302 202 w w + + + 40 V V1 80 Ω 02 ΣΑΩ 28 A V3 + w w 102 202arrow_forwardPlease solve and answer this problem correctly please. Thank you!!arrow_forward
- You're on an interplanetary mission, in an orbit around the Sun. Suppose you make a maneuver that brings your perihelion in closer to the Sun but leaves your aphelion unchanged. Then you must have Question 2 options: sped up at perihelion sped up at aphelion slowed down at perihelion slowed down at aphelionarrow_forwardThe force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE ONLY TRIGNOMETRIC FUNCTIONS (SIN/TAN/COS, NO LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!arrow_forwardThe force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE DO NOT USE LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!arrow_forward
- No chatgpt pls will upvotearrow_forwardThe force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE ONLY TRIGNOMETRIC FUNCTIONS (SIN/TAN/COS, NO LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!arrow_forwardNo chatgpt pls will upvotearrow_forward
- No chatgpt pls will upvotearrow_forwardSolve and answer the question correctly please. Thank you!!arrow_forward་ The position of a particle is described by r = (300e 0.5t) mm and 0 = (0.3t²) rad, where t is in seconds. Part A Determine the magnitude of the particle's velocity at the instant t = 1.5 s. Express your answer to three significant figures and include the appropriate units. v = Value Submit Request Answer Part B ? Units Determine the magnitude of the particle's acceleration at the instant t = 1.5 s. Express your answer to three significant figures and include the appropriate units. a = Value A ? Unitsarrow_forward
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning