
Concept explainers
(a)
The total time of flight of the ball as observed by the juggler in the train.
(a)

Answer to Problem 64P
The total time of flight of the ball as observed by the juggler in the train is found to be
Explanation of Solution
Given:
The initial velocity of the ball relative to the train
Formula used:
To determine the time of flight
Here,
Calculation:
The ball thrown in a train and the juggler are at rest with respect to the train. Choose a one dimensional coordinate system with the origin on the train and the positive y axis directed upwards. As the ball moves up and returns to the juggler’s hands, its displacement
Therefore,
Substitute these values in equation (1) and calculate the time of flight.
Conclusion:
Thus, the total time of flight of the ball as observed by the juggler in the train is found to be
(b)
The displacement of the ball during its rise as observed by the juggler.
(b)

Answer to Problem 64P
The displacement of the ball during its rise as observed by the juggler, is found to be
Explanation of Solution
Given:
The initial velocity of the ball relative to the train
Formula used:
To determine the displacement of the ball , the following equation of motion may be used.
Calculation:
As the ball moves upwards, it slows down due to the action of the Earth’s gravitational force. At the top most point of its trajectory, is instantaneous velocity v becomes zero.
Substitute the values of variables in the equation (2) and solve for
Conclusion:
Thus, the displacement of the ball during its rise as observed by the juggler, is found to be
(c)
The ball’s initial speed as observed by the friend on the ground.
(c)

Answer to Problem 64P
The ball’s initial speed as observed by the friend on the ground is found to be
Explanation of Solution
Given:
The initial velocity of the ball relative to the train
The velocity of the train relative to the ground
Formula used:
Using a coordinate system with the origin at the ground and the positive x axis along East, a vector diagram is constructed.
Figure 1
The person on the ground observes the ball to have a velocity
Calculation:
Substitute the values of variables in equation (3) and calculate the speed of the ball as observed by the person on the ground.
Conclusion:
Thus, the ball’s initial speed as observed by the friend on the ground is found to be
(d)
The angle of launch of the ball as observed by the person on the ground.
(d)

Answer to Problem 64P
The angle of launch of the ball as observed by the person on the ground
Explanation of Solution
Given:
The initial velocity of the ball relative to the train
The velocity of the train relative to the ground
Formula used:
Use Figure 1 to calculate the angle
Calculation:
Substitute the values of the variables in equation (4) and calculate the angle of launch of the ball as observed by the person on the ground.
Conclusion:
Thus, the angle of launch of the ball as observed by the person on the ground
(e)
The displacement of the ball during its rise as observed by the person on the ground.
(e)

Answer to Problem 64P
The displacement of the ball during its rise as observed by the person on the ground is found to be
Explanation of Solution
Given:
The initial velocity of the ball relative to the train
The velocity of the train relative to the ground
Formula used:
The displacement of the ball as seen by the person on the ground is given by the expression,
Here,
From Figure 1, it can be seen that the initial velocity
The time
The horizontal component of the ball’s velocity remains constant, since no force acts along the horizontal direction. While, since the acceleration of free fall acts downwards, the vertical component of the ball’s velocity varies with time.
The values of
Calculation:
The trajectory of the ball as seen by the person on the ground is shown in the diagram below;
At the top most point of its trajectory, the vertical component of the ball’s velocity becomes equal to zero. Use equation (7) and calculate the time taken by the ball to reach the top most point of its trajectory.
Calculate the value of
Calculate the value of
Substitute the values of
Conclusion:
Thus, the displacement of the ball during its rise as observed by the person on the ground is found to be
Want to see more full solutions like this?
Chapter 3 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- 12. If all three collisions in the figure below are totally inelastic, which will cause more damage? (think about which collision has a larger amount of kinetic energy dissipated/lost to the environment? I m II III A. I B. II C. III m m v brick wall ע ע 0.5v 2v 0.5m D. I and II E. II and III F. I and III G. I, II and III (all of them) 2marrow_forwardCan you solve this 2 question teach me step by step and draw for mearrow_forwardFrom this question and answer can you explain how get (0,0,5) and (5,0,,0) and can you teach me how to solve thisarrow_forward
- Can you solve this 2 question and teach me using ( engineer method formula)arrow_forward11. If all three collisions in the figure below are totally inelastic, which brings the car of mass (m) on the left to a halt? I m II III m m ע ע ע brick wall 0.5v 2m 2v 0.5m A. I B. II C. III D. I and II E. II and III F. I and III G. I, II and III (all of them)arrow_forwardHow can you tell which vowel is being produced here ( “ee,” “ah,” or “oo”)? Also, how would you be able to tell for the other vowels?arrow_forward
- You want to fabricate a soft microfluidic chip like the one below. How would you go about fabricating this chip knowing that you are targeting a channel with a square cross-sectional profile of 200 μm by 200 μm. What materials and steps would you use and why? Disregard the process to form the inlet and outlet. Square Cross Sectionarrow_forward1. What are the key steps involved in the fabrication of a semiconductor device. 2. You are hired by a chip manufacturing company, and you are asked to prepare a silicon wafer with the pattern below. Describe the process you would use. High Aspect Ratio Trenches Undoped Si Wafer P-doped Si 3. You would like to deposit material within a high aspect ratio trench. What approach would you use and why? 4. A person is setting up a small clean room space to carry out an outreach activity to educate high school students about patterning using photolithography. They obtained a positive photoresist, a used spin coater, a high energy light lamp for exposure and ordered a plastic transparency mask with a pattern on it to reduce cost. Upon trying this set up multiple times they find that the full resist gets developed, and they are unable to transfer the pattern onto the resist. Help them troubleshoot and find out why pattern of transfer has not been successful. 5. You are given a composite…arrow_forwardTwo complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find r and θ for (z1-z∗2)/z1+z2∗. Find r and θ for (z1−z2∗)z1z2∗ Please show all stepsarrow_forward
- An electromagnetic wave is traveling through vacuum in the positive x direction. Its electric field vector is given by E=E0sin(kx−ωt)j^,where j^ is the unit vector in the y direction. If B0 is the amplitude of the magnetic field vector, find the complete expression for the magnetic field vector B→ of the wave. What is the Poynting vector S(x,t), that is, the power per unit area associated with the electromagnetic wave described in the problem introduction? Give your answer in terms of some or all of the variables E0, B0, k, x, ω, t, and μ0. Specify the direction of the Poynting vector using the unit vectors i^, j^, and k^ as appropriate. Please explain all stepsarrow_forwardAnother worker is performing a task with an RWL of only 9 kg and is lifting 18 kg, giving him an LI of 2.0 (high risk). Questions:What is the primary issue according to NIOSH?Name two factors of the RWL that could be improved to reduce risk.If the horizontal distance is reduced from 50 cm to 30 cm, how does the HM change and what effect would it have?arrow_forwardTwo complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find r and θ for z1z2∗. Find r and θ for z1/z2∗? Find r and θ for (z1−z2)∗/z1+z2∗. Find r and θ for (z1−z2)∗/z1z2∗ Please explain all steps, Thank youarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College





