The mass of compound is given. By using the mass, the number of phosphorous atoms present in each of the compound given in exercise 52 is to be determined. Concept introduction: The atomic mass is defined as the sum of number of protons and number of neutrons. Molar mass of a substance is defined as the mass of the substance in gram of one mole of that compound. The molar mass of any compound can be calculated by adding of atomic weight of individual atoms present in it. The amount of substance containing 12 g of pure carbon is called a mole. One mole of atoms always contains 6 .022 × 10 23 molecules. The number of molecules in one mole is also called Avogadro’s number . To determine : The number of phosphorous ( P ) atoms in 1 .00 g of P 4 O 6 .
The mass of compound is given. By using the mass, the number of phosphorous atoms present in each of the compound given in exercise 52 is to be determined. Concept introduction: The atomic mass is defined as the sum of number of protons and number of neutrons. Molar mass of a substance is defined as the mass of the substance in gram of one mole of that compound. The molar mass of any compound can be calculated by adding of atomic weight of individual atoms present in it. The amount of substance containing 12 g of pure carbon is called a mole. One mole of atoms always contains 6 .022 × 10 23 molecules. The number of molecules in one mole is also called Avogadro’s number . To determine : The number of phosphorous ( P ) atoms in 1 .00 g of P 4 O 6 .
Definition Definition Number of atoms/molecules present in one mole of any substance. Avogadro's number is a constant. Its value is 6.02214076 × 10 23 per mole.
Chapter 3, Problem 64E
(a)
Interpretation Introduction
Interpretation: The mass of compound is given. By using the mass, the number of phosphorous atoms present in each of the compound given in exercise 52 is to be determined.
Concept introduction: The atomic mass is defined as the sum of number of protons and number of neutrons.
Molar mass of a substance is defined as the mass of the substance in gram of one mole of that compound.
The molar mass of any compound can be calculated by adding of atomic weight of individual atoms present in it.
The amount of substance containing
12g of pure carbon is called a mole. One mole of atoms always contains
6.022×1023 molecules. The number of molecules in one mole is also called Avogadro’s number.
To determine: The number of phosphorous
(P) atoms in
1.00g of
P4O6.
(a)
Expert Solution
Explanation of Solution
Given
The mass of
P4O6 is
1.00g.
The molar mass of
P4O6 is
219.866g/mol.
Formula
The number of moles in
P4O6 is calculated as,
MolesofP4O6=MassofP4O6MolarmassofP4O6
Substitute the values of mass and molar mass of
P4O6 in above equation.
The number of atoms is calculated by multiplying the number of moles with Avogadro’s number.
(b)
Interpretation Introduction
Interpretation: The mass of compound is given. By using the mass, the number of phosphorous atoms present in each of the compound given in exercise 52 is to be determined.
Concept introduction: The atomic mass is defined as the sum of number of protons and number of neutrons.
Molar mass of a substance is defined as the mass of the substance in gram of one mole of that compound.
The molar mass of any compound can be calculated by adding of atomic weight of individual atoms present in it.
The amount of substance containing
12g of pure carbon is called a mole. One mole of atoms always contains
6.022×1023 molecules. The number of molecules in one mole is also called Avogadro’s number.
To determine: The number of phosphorous
(P) atoms in
1.00g of
Ca3(PO4)2.
(b)
Expert Solution
Explanation of Solution
Given
The mass of
Ca3(PO4)2 is
1.00g.
The molar mass of
Ca3(PO4)2 is
310.172g/mol.
Formula
The number of moles in
Ca3(PO4)2 is calculated as,
The number of atoms is calculated by multiplying the number of moles with Avogadro’s number.
(c)
Interpretation Introduction
Interpretation: The mass of compound is given. By using the mass, the number of phosphorous atoms present in each of the compound given in exercise 52 is to be determined.
Concept introduction: The atomic mass is defined as the sum of number of protons and number of neutrons.
Molar mass of a substance is defined as the mass of the substance in gram of one mole of that compound.
The molar mass of any compound can be calculated by adding of atomic weight of individual atoms present in it.
The amount of substance containing
12g of pure carbon is called a mole. One mole of atoms always contains
6.022×1023 molecules. The number of molecules in one mole is also called Avogadro’s number.
To determine: The number of phosphorous
(P) atoms in
1.00g of
Na2HPO4.
(c)
Expert Solution
Explanation of Solution
Given
The mass of
Na2HPO4 is
1.00g.
The molar mass of
Na2HPO4 is
141.955g/mol.
Formula
The number of moles in
Na2HPO4 is calculated as,
MolesofNa2HPO4=MassofNa2HPO4MolarmassofNa2HPO4
Substitute the values of mass and molar mass of
Na2HPO4 in above equation.
Consider this step in a radical reaction:
Y
What type of step is this? Check all that apply.
Draw the products of the step on the right-hand side of the drawing area
below. If more than one set of products is possible, draw any set.
Also, draw the mechanism arrows on the left-hand side of the drawing
area to show how this happens.
ionization
propagation
initialization
passivation
none of the above
22.16 The following groups are ortho-para directors.
(a)
-C=CH₂
H
(d)
-Br
(b)
-NH2
(c)
-OCHS
Draw a contributing structure for the resonance-stabilized cation formed during elec-
trophilic aromatic substitution that shows the role of each group in stabilizing the
intermediate by further delocalizing its positive charge.
22.17 Predict the major product or products from treatment of each compound with
Cl₁/FeCl₂-
OH
(b)
NO2
CHO
22.18 How do you account for the fact that phenyl acetate is less reactive toward electro-
philic aromatic substitution than anisole?
Phenyl acetate
Anisole
CH
(d)
Show how to convert ethyl benzene to (a) 2,5-dichlorobenzoic acid and (b) 2,4-dichlorobenzoic acid.
Chapter 3 Solutions
Lab Manual for Zumdahl/Zumdahl/DeCoste¿s Chemistry, 10th Edition