
Lecture- Tutorials for Introductory Astronomy
3rd Edition
ISBN: 9780321820464
Author: Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 5TYP
Stars like our Sun have low-density, gaseous atmospheres surrounding their hot, dense cores. If you were looking at the spectra of light coming from the Sun (or any star), which of the three types of spectrum would be observed? Explain your reasoning.
Expert Solution & Answer

Learn your wayIncludes step-by-step video

schedule02:18
Students have asked these similar questions
A ball of mass m = 1.95 kg is released from rest at a height h = 57.0 cm above a light vertical spring of force constant k as in Figure [a] shown below. The ball strikes the top of the spring and compresses it a distance d = 7.80 cm as in Figure [b] shown below. Neglecting any energy losses
during the collision, find the following.
т
h
m
a
d
T
b
(a) Find the speed of the ball just as it touches the spring.
m/s
(b) Find the force constant of the spring.
kN/m
Truck suspensions often have "helper springs" that engage at high loads. One such arrangement is a leaf spring with a helper coil spring mounted on the axle, as shown in the figure below. When the main leaf spring is compressed by distance yo, the helper spring engages and then helps to
support any additional load. Suppose the leaf spring constant is 5.05 × 105 N/m, the helper spring constant is 3.50 x 105 N/m, and y = 0.500 m.
Truck body
yo
Main leaf
spring
-"Helper"
spring
Axle
(a) What is the compression of the leaf spring for a load of 6.00 × 105 N?
m
(b) How much work is done in compressing the springs?
]
A block of mass m₁
=
10.0 kg is connected to a block of mass m₂
34.0 kg by a massless string that passes over a light, frictionless pulley. The 34.0-kg block is connected to a spring that has negligible mass and a force constant of k = 200 N/m as shown in the figure below. The spring is
unstretched when the system is as shown in the figure, and the incline is frictionless. The 10.0-kg block is pulled a distance h = 22.0 cm down the incline of angle = 40.0° and released from rest. Find the speed of each block when the spring is again unstretched.
Vm1
×
1.32
Vm2
= 1.32
×
m/s
m/s
Chapter 3 Solutions
Lecture- Tutorials for Introductory Astronomy
Ch. 3 - The electromagnetic spectrum of light is often...Ch. 3 - Prob. 2EPLCh. 3 - Prob. 3EPLCh. 3 - Another property of light is the energy. Which of...Ch. 3 - Prob. 5EPLCh. 3 - Prob. 6EPLCh. 3 - Prob. 7EPLCh. 3 - For each statement (a-d) provided below, circle...Ch. 3 - Prob. 9EPLCh. 3 - Which, if any, of the different wavelengths of...
Ch. 3 - Which, if any, of the different wavelengths of...Ch. 3 - Which, if any, of the different wavelengths of...Ch. 3 - Imagine you are comparing the ability of electric...Ch. 3 - Prob. 2LUPCh. 3 - Prob. 3LUPCh. 3 - Imagine you are comparing the ability of electric...Ch. 3 - Two students are discussing their answers to...Ch. 3 - If two hot plates have the same temperature and...Ch. 3 - Likewise, if two stars have the same surface...Ch. 3 - Prob. 8LUPCh. 3 - Prob. 9LUPCh. 3 - Prob. 10LUPCh. 3 - Prob. 11LUPCh. 3 - Prob. 12LUPCh. 3 - Prob. 13LUPCh. 3 - Prob. 14LUPCh. 3 - The graph below plots the luminosity of a star on...Ch. 3 - Which color of light has the greatest energy...Ch. 3 - Imagine that the blue light and orange light from...Ch. 3 - Prob. 3BLPCh. 3 - Prob. 4BLPCh. 3 - Prob. 5BLPCh. 3 - Prob. 6BLPCh. 3 - Prob. 7BLPCh. 3 - Prob. 8BLPCh. 3 - Prob. 9BLPCh. 3 - Using the blackbody curves shown in Figure 2b, for...Ch. 3 - Prob. 11BLPCh. 3 - Prob. 12BLPCh. 3 - Prob. 13BLPCh. 3 - Prob. 14BLPCh. 3 - Consider the blackbody curves for Stars E and D...Ch. 3 - What type of spectrum is produced when the light...Ch. 3 - What type of spectrum is produced when the light...Ch. 3 - Describe in detail the source of light and the...Ch. 3 - There are dark lines in the absorption spectrum...Ch. 3 - Stars like our Sun have low-density, gaseous...Ch. 3 - Prob. 6TYPCh. 3 - Two students are looking at a brightly lit full...Ch. 3 - Prob. 8TYPCh. 3 - In this activity, we will use a representation of...Ch. 3 - One way an atom emits light (photons) occurs when...Ch. 3 - In which case does an atom emit more energy...Ch. 3 - Two students are talking about how light is...Ch. 3 - Prob. 5LIPCh. 3 - At the right is a sketch showing one of the atoms...Ch. 3 - Prob. 7LIPCh. 3 - At the right is a sketch showing one of the atoms...Ch. 3 - Consider the following discussion between the two...Ch. 3 - Prob. 10LIPCh. 3 - The absorption line spectra for six hypothetical...Ch. 3 - Prob. 2ANPCh. 3 - Prob. 3ANPCh. 3 - Prob. 4ANPCh. 3 - Prob. 5ANPCh. 3 - Prob. 7ANPCh. 3 - Prob. 8ANPCh. 3 - Prob. 9ANPCh. 3 -
Consider the situations shown (A-D).
In which...Ch. 3 -
Consider the situations shown (A-D).
In which...Ch. 3 -
In which of the situations shown (A-D) will the...Ch. 3 -
Imagine our solar system is moving in the Milky...Ch. 3 - Prob. 5DOPCh. 3 - Prob. 6DOPCh. 3 - Prob. 7DOPCh. 3 - Prob. 8DOPCh. 3 - Prob. 9DOP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Body, Heal Thyself The precision of mitotic cell division is essential for repairing damaged tissues like those...
Biology: Life on Earth with Physiology (11th Edition)
What is the difference between cellular respiration and external respiration?
Human Physiology: An Integrated Approach (8th Edition)
Although Samples A and C In Figure 2.9 appear different, they have very similar mineral compositions. Briefly e...
Applications and Investigations in Earth Science (9th Edition)
77. Write a molecular equation for the precipitation reaction that occurs (if any) when each pair of aqueous so...
Chemistry: A Molecular Approach (4th Edition)
16. Suppliers of radioisotopically labeled compounds usually provide each product as a mixture Of labeled and u...
Biochemistry: Concepts and Connections (2nd Edition)
What were the major microbiological interests of Martinus Beijerinck and Sergei Winogradsky? It can be said tha...
Brock Biology of Microorganisms (15th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A block of mass m₁ = 10.0 kg is connected to a block of mass m₂ = 34.0 kg by a massless string that passes over a light, frictionless pulley. The 34.0-kg block is connected to a spring that has negligible mass and a force constant of k = 200 N/m as shown in the figure below. The spring is unstretched when the system is as shown in the figure, and the incline is frictionless. The 10.0-kg block is pulled a distance h = 22.0 cm down the incline of angle 0 = 40.0° and released from rest. Find the speed of each block when the spring is again unstretched. m/s Vm1 Vm2 m/s mi m2 k iarrow_forwardTruck suspensions often have "helper springs" that engage at high loads. One such arrangement is a leaf spring with a helper coil spring mounted on the axle, as in the figure below. The helper spring engages when the main leaf spring is compressed by distance yo, and then helps to support any additional load. Consider a leaf spring constant of 5.45 × 105 N/m, helper spring constant of 3.60 × 105 N/m, and y = 0.500 m. Truck body Dyo Axle (a) What is the compression of the leaf spring for a load of 4.90 × 105 N? m (b) How much work is done compressing the springs? ]arrow_forwardA skier of mass 75 kg is pulled up a slope by a motor-driven cable. (a) How much work is required to pull him 50 m up a 30° slope (assumed frictionless) at a constant speed of 2.8 m/s? KJ (b) What power (expressed in hp) must a motor have to perform this task? hparrow_forward
- A block of mass 1.4 kg is attached to a horizontal spring that has a force constant 900 N/m as shown in the figure below. The spring is compressed 2.0 cm and is then released from rest. a x = 0 x b (a) A constant friction force of 4.4 N retards the block's motion from the moment it is released. Using an energy approach, find the position x of the block at which its speed is a maximum. cm (b) Explore the effect of an increased friction force of 13.0 N. At what position of the block does its maximum speed occur in this situation? cmarrow_forwardA block of mass m = 3.00 kg situated on a rough incline at an angle of 0 = 37.0° is connected to a spring of negligible mass having a spring constant of 100 N/m (see the figure below). The pulley is frictionelss. The block is released from rest when the spring is unstretched. The block moves 11.0 cm down the incline before coming to rest. Find the coefficient of kinetic friction between block and incline. k=100 N/m Ө marrow_forward23. What is the velocity of a beam of electrons that goes undeflected when passing through perpendicular electric and magnetic fields of magnitude 8.8 X 103 V/m and 7.5 X 10-3 T. respectively? What is the radius of the electron orbit if the electric field is turned off?arrow_forward
- 10. A light bulb emits 25.00 W of power as visible light. What are the average electric and magnetic fields from the light at a distance of 2.0 m?arrow_forward9. Some 1800 years ago Roman soldiers effectively used slings as deadly weapons. The length of these slings averaged about 81 cm and the lead shot that they used weighed about 30 grams. If in the wind up to a release, the shot rotated around the Roman slinger with a period of .15 seconds. Find the maximum acceleration of the shot before being released in m/s^2 and report it to two significant figures.arrow_forwardIn the movie Fast X, a 10100 kg round bomb is set rolling in Rome. The bomb gets up to 17.6 m/s. To try to stop the bomb, the protagonist Dom swings the counterweight of a crane, which has a mass of 354000 kg into the bomb at 3.61 m/s in the opposite direction. Directly after the collision the crane counterweight continues in the same direction it was going at 2.13 m/s. What is the velocity (magnitude and direction) of the bomb right after the collision?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning

Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning


Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning

Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning