Modern Physics
3rd Edition
ISBN: 9781111794378
Author: Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 5P
(a)
To determine
The general relationship between temperature and
(b)
To determine
The numerical value for the Wien’s constant.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
2.3. Find the de Broglie wavelength of (a) an electron, and (b) a proton with speeds of 5 × 106 m/s
and compare with the radius of the hydrogen atom, ao. Would either of these particles behave
like a wave inside the H atom?
What is the wavelength in meters of a photon generated by an electron going from n
= (8.000x10^0) to n= (1.00x10^0)? Answer to 3 significant figures and in scientific
notation. Sorry about the two n values, I can either do scientific notation need for
the answer or you have to enter the answer without scientific notation. I can't
change between them.
Note: Your answer is assumed to be reduced to the highest power possible.
Your Answer:
Answer
x10
units
3.9. The stopping potential when a frequency of 1.61×1015 Hz is shone on a metal is 3V.
(a) What is energy transferred by each photon?
(b) Calculate the work function of the metal.
(c) Find the Lorentz factor.
(d) What is the maximum speed of the ejected electrons?
Chapter 3 Solutions
Modern Physics
Ch. 3.2 - Calculate the quantum number, n, for this pendulum...Ch. 3.2 - An object of mass m on a spring of stiffness k...Ch. 3 - Prob. 1QCh. 3 - Prob. 2QCh. 3 - Prob. 3QCh. 3 - Prob. 4QCh. 3 - Prob. 5QCh. 3 - Prob. 6QCh. 3 - Prob. 7QCh. 3 - Prob. 8Q
Ch. 3 - Prob. 9QCh. 3 - Prob. 10QCh. 3 - Prob. 11QCh. 3 - Prob. 1PCh. 3 - Prob. 2PCh. 3 - Prob. 3PCh. 3 - Prob. 4PCh. 3 - Prob. 5PCh. 3 - Prob. 6PCh. 3 - Prob. 7PCh. 3 - Prob. 8PCh. 3 - Prob. 9PCh. 3 - Prob. 10PCh. 3 - Prob. 11PCh. 3 - Prob. 12PCh. 3 - Prob. 13PCh. 3 - Prob. 14PCh. 3 - Prob. 15PCh. 3 - Prob. 16PCh. 3 - Prob. 17PCh. 3 - Prob. 18PCh. 3 - Prob. 19PCh. 3 - Prob. 20PCh. 3 - Prob. 21PCh. 3 - Prob. 22PCh. 3 - Prob. 23PCh. 3 - Prob. 24PCh. 3 - Prob. 25PCh. 3 - Prob. 26PCh. 3 - Prob. 27PCh. 3 - Prob. 28PCh. 3 - Prob. 29PCh. 3 - Prob. 30PCh. 3 - Prob. 31PCh. 3 - Prob. 32PCh. 3 - Prob. 33PCh. 3 - Prob. 34PCh. 3 - Prob. 35PCh. 3 - Prob. 36PCh. 3 - Prob. 37PCh. 3 - As a single crystal is rotated in an x-ray...Ch. 3 - Prob. 39PCh. 3 - Prob. 40PCh. 3 - Prob. 41PCh. 3 - Prob. 42PCh. 3 - Prob. 43PCh. 3 - Prob. 44PCh. 3 - Prob. 46PCh. 3 - Prob. 47PCh. 3 - Prob. 48P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Question #1 a) Plot the energy spectral density p(2) of black-body radiation at T=3000 K and at 7= 5000 K. (These correspond to the apparent temperatures of "warm white" and "cool white" light bulbs.) (Note: Show both curves on a single graph, using a standard plotting software. Report the wave- length in nanometers.) b) For each of these two temperatures, at which wavelength is the radiation intensity maximum? (Note: Report the wavelengths in nanometers. Your answers should be consistent with the curves from part a), of course.)arrow_forwardThe intensity of blackbody radiation peaks at a wavelength of 583 nm. (a) What is the temperature (in K) of the radiation source? (Give your answer to at least 3 significant figures.) K (b) Determine the power radiated per unit area (in W/m2) of the radiation source at this temperature. W/m?arrow_forwardThe wavelength λmax at which the Planck distribution is a maximum can be found by solving dρ(λ,T)/dT = 0. Differentiate ρ(λ,T) with respect to T and show that the condition for the maximum can be expressed as xex − 5(ex − 1) = 0, where x = hc/λkT. There are no analytical solutions to this equation, but a numerical approach gives x = 4.965 as a solution. Use this result to confirm Wien’s law, that λmaxT is a constant, deduce an expression for the constant, and compare it to the value quoted in the text.arrow_forward
- 6.1.5. Radiation has been detected from space that is characteristic of an ideal radiator at T = 2.728 K. (This radiation is a relic of the Big Bang at the beginning of the universe.) For this temperature, at what wavelength does the Planck distribution peak? In what part of the electromagnetic spectrum is this wavelength? %3Darrow_forwardThe question is in the picturearrow_forward6.133 Blackbody radiation is the term used to describe thedependence of the radiation energy emitted by an objecton wavelength at a certain temperature. Planck proposed the quantum theory to account for the dependence.Shown in the figure is a plot of the radiation energyemitted by our sun versus wavelength. This curve ischaracteristic of objects at about 6000 K, which is thetemperature at the surface of the sun. At a highertemperature, the curve has a similar shape but themaximum will shift to a shorter wavelength. (a) Whatdoes this curve reveal about two consequences ofgreat biological significance on Earth? (b) How areastronomers able to determine the temperature at thesurface of stars in general?arrow_forward
- Please Asaparrow_forwardIn a photoelectric experiment it is found that a stopping potential of 1.00 V is needed to stop all the electrons when incident light of wavelength 225 nm is used and 1.5 V is needed for light of wavelength 207 nm. From these data determine Planck's constant. (Enter your answer, in eV s, to at least four significant figures.) 4.2367e-15 X ev s From these data determine the work function (in eV) of the metal. 4.6 X evarrow_forwardA) What is the approximate wavelength emitted from helium represented by the bright yellow emission line below? What is it's frequency in HZ and energy in eV? (1 eV= 1.6 x 10-19 joules). B) If the excited helium electron that emits a yellow photon in this line starts with a potential energy of 8 eV, what is the potential energy of the electron afterwards? Assume that the emission of a yellow photon is allowed by the laws of quantum mechanics. Also don't worry about the other electron.arrow_forward
- Please don't provide handwritten solution...arrow_forwardProblem 3: (a) Consider an object of constant mass m acted on by a three-force F. According to special relativity, yma + (F. v)v/c2. Hint: Compute E to notice that it appears in dP, and show that prove that F dE dt F.v. (b) In a hot star, a multiply-ionized, hydrogen-like atom with a single remaining electron produces a series of spectral lines as described by the Bohr model. The series corresponds to electronic transitions that 1 terminate in the same final state. The longest and shortest wavelengths of the series are 63.3 nm and 22.8 nm, respectively. What is the ion?arrow_forward(a) Calculate the speed of an electron that is in the n = 1 orbit of a hydrogen atom, and give your answerv as a fraction of the speed of light in empty space c, for example, v = 0.5 if the answer werev = c/2 = 1.50 × 108 m/s. (It isn’t.)(b) How many nanometers would be the wavelength of the photon emitted when the electron in a hydrogenatom jumps from the n = 3 orbit to the n = 2 orbit? This is the Hα line, and its light is scarlet, the color offresh human blood.(c) How many nanometers would be the wavelength of the photon emitted when the electron in a hydrogenatom jumps from the n = 2 orbit to the n = 1 orbit?(d) How many nanometers would be the wavelength of a photon that would have the minimum amount ofenergy needed to ionize any hydrogen atom? (Hint: Electromagnetic radiation with this wavelength or shorteris called extreme ultraviolet radiation.(e) How many electron-volts (eV) would the electron in part (7)(d) need to have?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning