Modern Physics
Modern Physics
3rd Edition
ISBN: 9781111794378
Author: Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 3, Problem 48P

(a)

To determine

The wavelength if the incident photon.

(a)

Expert Solution
Check Mark

Answer to Problem 48P

The wavelength if the incident photon is 0.101nm.

Explanation of Solution

Write the formula for Compton shift,

  λλ0=hmec(1cosθ)        (I)

Here, me is the mass of the electron, c is the speed of light and θ is the scattering angle.

Write the equation for kinetic energy of the recoiling electron using conservation of energy.

  12mev2=hcλ0hcλ        (II)

Here, me is the mass of the electron, c is the speed of light and v is the velocity of the photon.

Conclusion:

Substitute 9.11×1031 kg for me, and 2.18×106 m/s for v in expression (II)

  K=12mev2=12×9.11×1031 kg(2.18×106 m/s)2=2.16×1018 J

Write the expression for energy lost by the photon,

  hcλ0hcλ=2.16×1018 J        (III)

Substitute 9.11×1031 kg for me, 6.63×1034 Js  for h and 3×108 m for c in expression (I)

  λλ0=hmec(1cosθ)=6.63×1034 Js s9.11×1031 kg(3×108 m)(1cos17.4°)λ=λ0+1.11×1013 m        (IV)

Substituting the expression (IV) in expression (III) and solve for λ0 by substituting 6.63×1034 Js  for h and 3×108 m for c in the expression.

  1λ01λ0+0.111 pm=2.16×1018 J s6.63×1034 J s(3×108 m)=1.09×107mλ0+0.111 pmλ0λ02+λ0(0.111 pm)=1.09×107m0.111 pm=(1.09×107m)λ02+1.21×106λ00=(1.09×107λ02+1.21×106 mλ01.11×1013 m2)λ0=1.21×106 m±((1.21×106 m)24(1.09×107)(1.11×1013 m2))2(1.09×107)

The wavelength if the incident photon is 0.101nm.

(b)

To determine

The angle through which the electron scatters.

(b)

Expert Solution
Check Mark

Answer to Problem 48P

The angle through which the electron scatters is 80.9°

Explanation of Solution

Write the expression for conservation of momentum in the yaxis ,

  pesinϕ=psinθ        (I)

Write the expression for the wavelength of the scattered photon.

  λ=hmec(1cosθ)+λ0        (II)

Here, me is the mass of the electron, c is the speed of light and θ is the scattering angle.

Conclusion:

Substitute 17.4° for θ,  9.11×1031 kg for me, 3.00×108 for c  6.63×1034 Js  for h and 1.01×1010m for λ in expression (II)

  λ=6.63×1034 Js 9.11×1031 kg(3.00×108)c(1cos17.4°)+1.01×1010m=1.011×1010m

The scattering angle for the electron is,

  ϕ=sin1(hsinθλmev)

Substitute 17.4° for θ,  9.11×1031 kg for me, 3.00×108 for c  6.63×1034 Js  for h, 2.18×106m/s for v  and 1.01×1010m for λ in expression (II)

  ϕ=sin1((6.63×1034 Js )sin(17.4°)(1.01×1010m)(9.11×1031 kg)(2.18×106m/s))=80.9°

The angle through which the electron scatters is 80.9°

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
You are working with a team that is designing a new roller coaster-type amusement park ride for a major theme park. You are present for the testing of the ride, in which an empty 150 kg car is sent along the entire ride. Near the end of the ride, the car is at near rest at the top of a 100 m tall track. It then enters a final section, rolling down an undulating hill to ground level. The total length of track for this final section from the top to the ground is 250 m. For the first 230 m, a constant friction force of 370 N acts from computer-controlled brakes. For the last 20 m, which is horizontal at ground level, the computer increases the friction force to a value required for the speed to be reduced to zero just as the car arrives at the point on the track at which the passengers exit. (a) Determine the required constant friction force (in N) for the last 20 m for the empty test car. N (b) Find the highest speed (in m/s) reached by the car during the final section of track length…
A player kicks a football at the start of the game. After a 4 second flight, the ball touches the ground 50 m from the kicking tee. Assume air resistance is negligible and the take-off and landing height are the same (i.e., time to peak = time to fall = ½ total flight time). (Note: For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places unless stated otherwise.) Calculate and answer all parts. Only use equations PROVIDED:
Please answer.
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning