Introductory Circuit Analysis; Laboratory Manual For Introductory Circuit Analysis Format: Kit/package/shrinkwrap
13th Edition
ISBN: 9780134297446
Author: Boylestad, Robert L.
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 59P
- Using the characteristics of Fig. 3.38, determine the resistance of the photoconductive cell at 10 and 100 foot-candles of illumination. As in Problem 58, note that it is a log scale.
- Does the cell have a positive or a negative illumination coefficient?
- Is the coefficient a fixed value for the range 0.1 to 1000 foot-candles? Why?
- What is the approximate rate of change of R with illumination at 10 foot-candles?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Q1.
Figure 1 shows a differential amplifier. Assume that all transistors are
identical. ẞ=180, V = 0.026 Vand V = 0.7V.
a)
b)
Show that the d.c. bias current to the differential pairs is
Iccs = 0.6 mA.
Calculate the d.c. voltages at the output terminals V。1 and V02-
c)
Given that the input signals are v₁ = 4 sin(wt) and
V₁₂ = 2sin(wt) in mV, find the a.c. voltage between V01 and
V02-
Q1.
Figure 1 shows a differential amplifier. Assume that all transistors are
identical. ẞ=180, V = 0.026 Vand V = 0.7V.
a)
b)
Show that the d.c. bias current to the differential pairs is
Iccs = 0.6 mA.
Calculate the d.c. voltages at the output terminals V。1 and V02-
c)
Given that the input signals are v₁ = 4 sin(wt) and
V₁₂ = 2sin(wt) in mV, find the a.c. voltage between V01 and
V02-
Q4
Determine the Y-parameters at a frequency of 10 kHz for the two-port network shown in
figure below. Present your answer in matrix form.
R1
R3
C3
R5
L5
•w•
5 Ohm
ww
4 Ohm 200 μF
5 Ohm
8.4 mH
1 Ohm
R2
C4
796 µF
400 μF
C2
Chapter 3 Solutions
Introductory Circuit Analysis; Laboratory Manual For Introductory Circuit Analysis Format: Kit/package/shrinkwrap
Ch. 3 - Convert the following to mils: 0.2Â in. 1/32Â in....Ch. 3 - Calculate the area in circular mils (CM) of wires...Ch. 3 - Prob. 3PCh. 3 - What is the resistance of a copper wire 200 ft...Ch. 3 - What is the area in circular mils of an aluminum...Ch. 3 - A 2.2 resistor is to be made of nichrome wire. If...Ch. 3 - What is the diameter in inches of a copper wire...Ch. 3 - A wire 1000 ft long has a resistance of 0.5 and an...Ch. 3 - A contractor is concerned about the length of...Ch. 3 - What is the cross-sectional area in circular mile...
Ch. 3 - Prob. 11PCh. 3 - Determine the increase in resistance of a copper...Ch. 3 - What is the new resistance level of a copper wire...Ch. 3 - In construction the two most common wires employed...Ch. 3 - Compare the area of a #12 wire with the area of a...Ch. 3 - Compare the area of a #20 hookup wire to a #10...Ch. 3 - For the system in Fig. 3.46, the resistance of...Ch. 3 - From Table 3.2, determine the maximum permissible...Ch. 3 - The resistance of a copper wire is 2 at room...Ch. 3 - The resistance of an aluminum bus-bar is 0.02 at...Ch. 3 - The resistance of a copper wire is 1.2 at room...Ch. 3 - The resistance of a copper wire is 25m at a...Ch. 3 - The resistance of a copper wire is 1 at 20C (room...Ch. 3 - If the resistance of 1000 ft of wire is about 1 at...Ch. 3 - Verify the value of 20 for copper in Table 3.4 by...Ch. 3 - Prob. 26PCh. 3 - Prob. 27PCh. 3 - A 22 wire-wound resistor is rated at +200PPM for a...Ch. 3 - A 100 wire-wound resistor is rated at +100PPM for...Ch. 3 - What is the approximate increase in size from a 1...Ch. 3 - If the resistance between the outside terminals of...Ch. 3 - If the wiper arm of a linear potentiometer is...Ch. 3 - Show the connections required to establish 4k...Ch. 3 - Find the range in which a resistor having the...Ch. 3 - Find the color code for the following 10%...Ch. 3 - Is there an overlap in coverage between 20...Ch. 3 - Given a resistor coded yellow, violet, brown,...Ch. 3 - How would Fig. 3.26(a) change if the resistors of...Ch. 3 - Find the value of the following surface mount...Ch. 3 - Find the conductance of each of the following...Ch. 3 - Find the conductance of 1000 ft of #12 AWG wire...Ch. 3 - Find the conductance of a 10,20 and 100 resistor...Ch. 3 - The conductance of a wire is 100 S. If the area of...Ch. 3 - Why do you never apply an ohmmeter to a live...Ch. 3 - How would you check the status of a fuse with an...Ch. 3 - How would you determine the on and off states of a...Ch. 3 - How would you use an ohmmeter to check the status...Ch. 3 - Using metric units, determine the length of a...Ch. 3 - Repeat Problem 11 using metric units; that is,...Ch. 3 - If the sheet resistance of a tin oxide sample is...Ch. 3 - Determine the width of a carbon resistor having a...Ch. 3 - Derive the conversion factor between (CM-/ft) and...Ch. 3 - In your own words, review what you have learned...Ch. 3 - Visit your local library and find a table listing...Ch. 3 - Find at least one article on the application of...Ch. 3 - Using the required 1MA/cm2 density level for...Ch. 3 - Research the SQUID magnetic field detector and...Ch. 3 - Find the resistance of the thermistor having the...Ch. 3 - Using the characteristics of Fig. 3.38, determine...Ch. 3 - Referring to Fig. 3.40(a), find the terminal...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Q1. Figure 1 shows (a) a differential amplifier and (b) a current mirror. All transistors in the circuit are identical and their parameters are: VBE = 0.7 V, VT = 0.026 V, and ẞ = 150. a) Given that the biasing current of Figure 1(a) is I = 1 mA, determine the dc voltages at the output terminals of the differential amplifier. b) Given that the biasing current of Figure 1(a) is I = 1 mA and the ac input signal is via = 1.5 sin(wt) mv, find the corresponding ac output voltage at terminal vo₁ of the differential amplifier. c) In order to provide an output current of 1 mA using on Figure 1(b), find the value for the resistor, R, in Figure 1(b).arrow_forwardQ2. Two op-amp circuits are shown in Figure 2. One of them is an inverting amplifier and the other is a Schmitt trigger. Assume the op-amps used in both circuits are ideal op-amps. The output of the Schmitt trigger is switching between -12 V and +12V (i.e., Vmax = ±12 V). a) Identify which is the inverting amplifier and which is the Schmitt trigger. b) Use the corresponding circuit diagram in Figure 2 to design an inverting amplifier that has a gain of -20 with the output offset voltage minimised. Determine the values of the resistors. c) Select the corresponding circuit diagram in Figure 2 to design a Schmitt trigger that has a lower trigger level of -1 V and an upper trigger level of +2 V. Determine the values of resistors. Sketch the transfer characteristics of this trigger.arrow_forwardQ2. A simple comparator and a Schmitt trigger are shown in Figures 2(a) and 2(b). The maximum output voltage, Vmax, can switch between -10 V and +10 V for both circuits. The lower and upper trigger levels of the Schmitt trigger are -1 V and +2 V, respectively. a) Based on the information given above, sketch the transfer characteristics for both circuits. b) Show that the hysteresis of the Schmitt trigger of Figure 2(b) can be expressed as 2. R₁- Vmax Vnys R₁ + R₂ c) Using the parameters provided above, determine the ratio of R₂/R₁ for the circuit of Figure 2(b).arrow_forward
- Don't use ai to answer I will report you answerarrow_forward3 phase transformer bank is connected with the primaries in deltas and secondaries in wye. Line voltage of the primary is 120V and secondary side is 240V. Required to find the ratio of primary to secondary turns on each of the single phase transformers.arrow_forwardA generator delivers power through a transmission line to a star-connected load. The system is balanced. Find the values of the currents involved in per unit, considering: (a) single-phase bases and (b) three-phase bases. Datos: S₁ = 2 MVA Vg = 13.2 kV Generador ++ Linea Demanda Pg+jQg Uga ZLT a Zlinea 8.68+j3.162 Zcarga = 70+/10 la ZDa ZD b ZD€ Bases trifásicas: Ug b ZLT b Sb36 = 2 MVA Vb34 = 13.820° kV Ugo ZLTCarrow_forward
- The circuit below shows a source driving a load. The current source is given by:i(t) = 6 cos (500t – 45) A(a) Calculate the value of the complex power delivered bythe source to the load when R = 5Ω and C = 10µF.(b) Determine an expression for the phasor-transformedvoltage V(jω) across the load, when the source delivers2.2 + 6.5j var (volt-amps reactive) to the load.arrow_forwardFor the circuit shown below, V1 = 10 sin(ωt) andV2 = 2 sin(ωt). Determine an expression for the voltage at thenode (between the inductor, capacitor and resistor) andhence determine the current flowing through the inductorarrow_forwardThe circuit shown in the figure below has been left for a longtime before the switch is opened at time t=0s. Determine anexpression for the current labelled i after the switch isopened. In your answer explain whether the response is validfor t≥0s or t>0sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
What is an electric furnace and how does it work?; Author: Fire & Ice Heating and Air Conditioning Inc;https://www.youtube.com/watch?v=wjAWecPGi0M;License: Standard Youtube License