Life in the Universe (4th Edition)
4th Edition
ISBN: 9780134089089
Author: Jeffrey O. Bennett, Seth Shostak
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 58IF
To determine
The distance of alpha century in terms of distance between moon and earth. Also determine the difficulty in sending astronauts to stars as compared to moon.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Part 3
1. The diameter of the Sun is 1,391,400 km. The diameter of the Moon is 3,474.8 km. Find
the ratio, r= Dsa/Dsvan between the sizes.
2. From the point of view of an obs erver on Eanth (consider the Earth as a point-like object),
during the eclipse, the Moon covers the Sun exactly. Sketch a picture to illustrate this
fact. Use a nuler to get a straight line. Your drawing does not need to be in scale.
3. The Sun is 1 Astronomical Unit (AU) away from the Earth. Find the distance between the
Earth and the Moon in AU's using the ratio of similar triangles. Show your work.
DEM=
AU.
Convert this to kilometers. Use 1 AU = 149,600,000 km.
DEM =
km.
Please answer the following
A) Suppose an object takes 1000 years to orbit the Sun. How many times farther from the Sun is it, when compared with Earth?
B) Communications with the spacecraft Alpha using radio waves require 2000 years for the round trip (there and back). This implies that Alpha is how many light years away from Earth?
Let’s say you’re looking for extrasolar planets. You observe a star that has a spectral shift in the line that is supposed to be at at 656.28011 nm – this star shows this line at 656.28005 nm. What is the radial velocity of star (in m/s) and in what direction in relation to you? a) 27.4 m/s, towards b) 27.4 km/s, away c) -27.4 m/s, toward d) -27.4 km/s, away
Chapter 3 Solutions
Life in the Universe (4th Edition)
Ch. 3 - List three major ideas of astronomy that help...Ch. 3 - Briefly define and describe each of the various...Ch. 3 - Describe the solar system as it looks on the...Ch. 3 - Prob. 4RQCh. 3 - Prob. 5RQCh. 3 - Prob. 6RQCh. 3 - Prob. 7RQCh. 3 - What do we mean when we say that Earth and life...Ch. 3 - Imagine describing the cosmic calendar to a...Ch. 3 - Prob. 10RQ
Ch. 3 - Prob. 11RQCh. 3 - Prob. 12RQCh. 3 - What is the difference between matter in the...Ch. 3 - Define and give examples of kinetic energy,...Ch. 3 - Prob. 15RQCh. 3 - Prob. 16RQCh. 3 - Briefly describe the four major features of our...Ch. 3 - Briefly describe the nebular theory and how it...Ch. 3 - What was the close encounter hypothesis for our...Ch. 3 - How have recent discoveries led scientists to...Ch. 3 - Prob. 21TYUCh. 3 - At a middle school talent show, 14-year-old Sam...Ch. 3 - SETI researchers announced today that if they...Ch. 3 - A noted physicist today announced that he has...Ch. 3 - Prob. 25TYUCh. 3 - Astronomers have discovered a galaxy in the far...Ch. 3 - Inventor John Johnson has patented a device that...Ch. 3 - Prob. 28TYUCh. 3 - Prob. 29TYUCh. 3 - Using new, powerful telescopes, biologists today...Ch. 3 - Prob. 31TYUCh. 3 - Prob. 32TYUCh. 3 - A television advertisement claiming that a product...Ch. 3 - When we say the universe is expanding, we mean...Ch. 3 - Prob. 35TYUCh. 3 - The age of our solar system is about (a) one-third...Ch. 3 - Prob. 37TYUCh. 3 - How many of the planets orbit the Sun in the same...Ch. 3 - Prob. 39TYUCh. 3 - Prob. 40TYUCh. 3 - Explaining the Past. Is it really possible for...Ch. 3 - A Strange Star System. Suppose that we discovered...Ch. 3 - Prob. 44IFCh. 3 - Alien Technology. Some people believe that Earth...Ch. 3 - Atomic Terminology Practice. a. The most common...Ch. 3 - Prob. 49IFCh. 3 - Prob. 50IFCh. 3 - Patterns of Motion. In one or two paragraphs,...Ch. 3 - Two Kinds of Planets. The jovian planets differ...Ch. 3 - Pluto and Eris. How does the nebular theory...Ch. 3 - Rocks from Other Solar Systems. Many leftovers...Ch. 3 - Prob. 55IFCh. 3 - Prob. 56IFCh. 3 - Scale of the Solar System. The real diameters of...Ch. 3 - Prob. 58IFCh. 3 - Prob. 59IFCh. 3 - Prob. 60IFCh. 3 - Prob. 61IFCh. 3 - Prob. 62IFCh. 3 - Prob. 63IFCh. 3 - Prob. 67WPCh. 3 - Tour of the Solar System. Visit one of the many...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- How Do We Know? How can mathematical models allow scientists to study processes that are hidden from human eyes or happen too fast or too slowly for humans to experience?arrow_forwardDo the previous problem again, this time using the information that the Sun is 150,000,000 km away. You will get a very large number of km as your answer. To get a better feeling for how the distances compare, try calculating the time it takes light at a speed of 299,338 km/s to travel from the Sun to Earth and from Alpha Centauri to Earth. For Alpha Centauri, figure out how long the trip will take in years as well as in seconds.arrow_forwardPlease tell me correct option with proper explanation.arrow_forward
- 1. A distant galaxy has an apparent magnitude of 10 and is 4,000 kpc away. What is its absolute magnitude? (Round your answer to at least one decimal place.) The difference in absolute magnitude between two objects viewed from the same distance is related to their fluxes by the flux-magnitude relation. FA/FB= 2.51(MB − MA) 2. How does the absolute magnitude of this galaxy compare to the Milky Way (M = −21)?arrow_forwardYou record the spectrum of a distant star using a telescope on the ground on Earth. Upon analysing the spectrum, you discover absorption lines spaced at intervals typical of oxygen atoms. Which of the following are possible interpretations of this evidence? Select all that apply. The width of the spectral lines gives the diameter of the star The star is likely orbited by habitable planets with breathable atmospheres. The height of the spectral lines above the star's general blackbody spectral curve tells us how much oxygen is in the star The atmosphere of Earth contains oxygen The red or blueshift of the set of lines can tell us the speed of the star's motion toward or away from usarrow_forwardImagine a telescope was placed on the planet Mercury and was used to measure the positions of stars in the sky. Assuming Mercury follows a circular orbit with a semi-major axis = 0.387 AU and a period = 88 days, calculate the maximum %3D stellar aberration that would be detected, expressing your answer in arcseconds. Choose the option below that best matches your answer. Select one: Оа. 100 O b. 25 О с 60 O d. 15 O e. 33arrow_forward
- I attempted to answer this question and I'm not sure what I am doing wrong. My formula says A.S. = 206265 (separation/distance from observer) I know to convert to the same units, so I ended up with 80 Million Km being 8 x 10 ^ -6 LY Could you please explain each step especially for the part that I got wrong for both A and B?arrow_forwardEarth is about 150 million kilometers from the Sun (1 Astronomical Unit, or AU), and the apparent brightness of the Sun in our sky is about 1300 watts/m2. Using these two facts and the inverse square law for light, determine the apparent brightness that we would measure for the Sun if we were located at the following positions. a) At the mean distance of Pluto (40 Astronomical Units).arrow_forward1. Planet A has an orbital period of 12 years and radius that is 0.033 times the radius of the star. Calculate the fractional dip of the star brightness in the case that planet A is transiting. Give the answer as a number. Quote the formula you use and explain any assumptions you have to make. 2. Planet B has an orbital period of 1 year and is located closer to its star than planet A. You succeed in detecting planet B with the radial velocity technique as well! From this measurement you calculate a minimum mass of planet B to be 75% that of the Earth. (a) Since you detect the planet with both transit method and radial velocity method, what do you know about the inclination of the planetary system? (b) Given this inclination, estimate the true mass of planet B (in units of Earth mass). You do not need to do a detailed calculation, just explain the argument. 3. You also measure the radius of planet B to be the same as Earth, one Earth radius. (a) How does the density of planet B compare…arrow_forward
- Read this main idea: The sun is the center of our solar system. Choose three details that go with the main idea. The sun's gravity holds the planets in place. It provides them with heat and light. The largest stars, called supergiants, are 1,500 times bigger than our sun. It takes Earth 365 days to orbit the sun. Jupiter takes 12 years! Our sun is not the largest or hottest star. It is a medium sized yellow star. Radio telescopes use radio waves to show stars in great detail. Astronomers long ago and today use star charts to map star locations. All of the planets in our solar system revolve around one star-our sun. Stars can be blue, white, yellow, or red. Blue stars are the hottest. A reflector telescope bounces star light through mirrors.arrow_forward1arrow_forwardMercury's orbit ranges from 46 to 70 million km from the Sun, while Earth orbits at about 150 million km. a. The Sun has a 30-arc-minute diameter viewed from Earth; what range of sizes does it have when viewed from Mercury? When Mercury is 46 million km from the Sun, the Sun has a diameter of When Mercury is 70 million km from the Sun, the Sun has a diameter of arc-minutes. arc-minutes. b. At Mercury's orbital extremes, how many times stronger is the Sun's radiation on Mercury than on Earth? At 46 million km, the Sun's radiation is times stronger than on Earth. At 70 million km, the Sun's radiation is times stronger than on Earth.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax