Life in the Universe (4th Edition)
4th Edition
ISBN: 9780134089089
Author: Jeffrey O. Bennett, Seth Shostak
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3, Problem 57IF
Scale of the Solar System. The real diameters of the Sun and Earth are approximately 1.4 million kilometers and 12,800 kilometers, respectively. The Earth–Sun distance is approximately 150 million kilometers. Calculate the sizes of Earth and the Sun, and the distance between them, on a scale of 1 to 10 billion. Show your work clearly.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Q1
Suppose you were given a 3 in diameter ball to represent the Earth and a 1 in diameter ball to represent the Moon. (The actual ratio of Earth diameter to Moon diameter is 3.7 to 1.)
The actual average Earth–Moon distance is about 384,000 kilometers, and Earth’s diameter is about 12,800 kilometers. How many “Earth diameters” is the distance from Earth to the Moon?
Based on your answer to Question 2, what is the correct scaled distance of the Moon, using the 3-inch ball as Earth?
The Sun’s actual diameter is about 1,400,000 kilometers. How many “Earth diameters” is this? Given your 3-inch Earth, how large (i.e what diameter) of a ball would you need to represent the Sun? Give your answer in feet.
The average Earth–Sun distance is about 149,600,000 km. To represent this distance to scale, how far away would you have to place your 3-inch Earth from your Sun? Give your answer in feet.
Could we use this scale to visualize the solar system instead of just the Earth and Moon? Why or Why…
As we discuss in class, the radius of the Earth is approximately 6370 km. Theradius of the Sun, on the other hand, is approximately 700,000 km. The Sun is located,on average, one astronomical unit (1 au) from the Earth.
Imagine that you stand near Mansueto Library, at the corner of 57th and Ellis.Mansueto’s dome is 35 feet (10.7 meters) high. Let’s imagine we put a model of theSun inside the dome, such that it just fits — that is, the model Sun’s diameter is 35 feet
The nearest star to the Solar System outside of the Sun is Proxima Centauri,which is approximately 4.2 light years away. Given the scale model outlined above,how far would a model Proxima Centauri be placed from you? Give your answer inmiles and km
Chapter 3 Solutions
Life in the Universe (4th Edition)
Ch. 3 - List three major ideas of astronomy that help...Ch. 3 - Briefly define and describe each of the various...Ch. 3 - Describe the solar system as it looks on the...Ch. 3 - Prob. 4RQCh. 3 - Prob. 5RQCh. 3 - Prob. 6RQCh. 3 - Prob. 7RQCh. 3 - What do we mean when we say that Earth and life...Ch. 3 - Imagine describing the cosmic calendar to a...Ch. 3 - Prob. 10RQ
Ch. 3 - Prob. 11RQCh. 3 - Prob. 12RQCh. 3 - What is the difference between matter in the...Ch. 3 - Define and give examples of kinetic energy,...Ch. 3 - Prob. 15RQCh. 3 - Prob. 16RQCh. 3 - Briefly describe the four major features of our...Ch. 3 - Briefly describe the nebular theory and how it...Ch. 3 - What was the close encounter hypothesis for our...Ch. 3 - How have recent discoveries led scientists to...Ch. 3 - Prob. 21TYUCh. 3 - At a middle school talent show, 14-year-old Sam...Ch. 3 - SETI researchers announced today that if they...Ch. 3 - A noted physicist today announced that he has...Ch. 3 - Prob. 25TYUCh. 3 - Astronomers have discovered a galaxy in the far...Ch. 3 - Inventor John Johnson has patented a device that...Ch. 3 - Prob. 28TYUCh. 3 - Prob. 29TYUCh. 3 - Using new, powerful telescopes, biologists today...Ch. 3 - Prob. 31TYUCh. 3 - Prob. 32TYUCh. 3 - A television advertisement claiming that a product...Ch. 3 - When we say the universe is expanding, we mean...Ch. 3 - Prob. 35TYUCh. 3 - The age of our solar system is about (a) one-third...Ch. 3 - Prob. 37TYUCh. 3 - How many of the planets orbit the Sun in the same...Ch. 3 - Prob. 39TYUCh. 3 - Prob. 40TYUCh. 3 - Explaining the Past. Is it really possible for...Ch. 3 - A Strange Star System. Suppose that we discovered...Ch. 3 - Prob. 44IFCh. 3 - Alien Technology. Some people believe that Earth...Ch. 3 - Atomic Terminology Practice. a. The most common...Ch. 3 - Prob. 49IFCh. 3 - Prob. 50IFCh. 3 - Patterns of Motion. In one or two paragraphs,...Ch. 3 - Two Kinds of Planets. The jovian planets differ...Ch. 3 - Pluto and Eris. How does the nebular theory...Ch. 3 - Rocks from Other Solar Systems. Many leftovers...Ch. 3 - Prob. 55IFCh. 3 - Prob. 56IFCh. 3 - Scale of the Solar System. The real diameters of...Ch. 3 - Prob. 58IFCh. 3 - Prob. 59IFCh. 3 - Prob. 60IFCh. 3 - Prob. 61IFCh. 3 - Prob. 62IFCh. 3 - Prob. 63IFCh. 3 - Prob. 67WPCh. 3 - Tour of the Solar System. Visit one of the many...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Modified True/False 9. A giant bacterium that is large enough to be seen without a microscope is Selenomonas.
Microbiology with Diseases by Body System (5th Edition)
In cats, tortoiseshell coat color appears in females. A tortoiseshell coat has patches of dark brown fur and pa...
Genetic Analysis: An Integrated Approach (3rd Edition)
Choose the best answer to each of the following. Explain your reasoning. When it summer in Australia, it is (a)...
Cosmic Perspective Fundamentals
Determine [OH], [H+], and the pH of each of the following solutions. a. 1.0 M KCl b. 1.0 M KC2H3O2
Chemistry
Write a balanced chemical equation for each chemical reaction. a. Solid magnesium reacts with aqueous copper(I)...
Introductory Chemistry (6th Edition)
With what geologic feature are the earthquakes in the mid-Atlantic associated?
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Please answer the question and subquestions completely! This is one whole question which has subquestions! According to the official Bartleby guidelines, each question can have up to two subquestions! Thank you! 1) Use Kepler's Law to find the time (in Earth’s years) for Mars to orbit the Sun if the radius of Mars’ orbit is 1.5 times the radius of Earth's orbit. 1.8 2.8 3.4 4.2 A) The mass of Mars is about 1/10 the mass of Earth. Its diameter is about 1/2 the diameter of Earth. What is the gravitational acceleration at the surface of Mars? 9.8 m/s2 2.0 m/s2 3.9 m/s2 4.9 m/s2 none of these B) A 9.0 x 10 3 kg satellite orbits the Earth at the distance of 2.56 x 10 7 m from Earth’s surface. What is its period? 1.1 x 10 4 s 4.1 x 10 4 s 5.7 x 10 4 s 1.5 x 10 5 sarrow_forwardIn Table 2, there is a list of 15 planets, some of which are real objects discovered by the Kepler space telescope, and some are hypothetical planets. For each one, you are provided the temperature of the star that each planet orbits in degrees Kelvin (K), the distance that each planet orbits from their star in astronomical units (AUs) and the size or radius of each planet in Earth radii (RE). Since we are concerned with finding Earth-like planets, we will assume that the composition of these planets are similar to Earth's, so we will not directly look at their masses, rather their sizes (radii) along with the other characteristics. Determine which of these 15 planets meets our criteria of a planet that could possibly support Earth-like life. Use the Habitable Planet Classification Flow Chart (below) to complete Table 2. Whenever the individual value you are looking at falls within the range of values specified on the flow chart, mark the cell to the right of the value with a Y for…arrow_forwardThinking about the Scale of the Solar System As we discussed, the radius of the Earth is approximately 6370 km. The Sun, on the other hand, is approximately 700,000 km in radius and located, on average, one astronomical unit (1 au=1.5x108 km) from the Earth. Imagine that you stand near Mansueto Library, at the corner of 57th and Ellis. You hold a standard desk globe, which has a diameter of 12 inches, and you want to build a model of the Sun, Earth, and their separation that keeps all sizes and lengths in proportion to one another. a) How big would the Sun be in this scale model? Give your answer in feet and meters. b) The nearest star to the Solar System outside of the Sun is Proxima Centauri, which is approximately 4.2 light years away (a light year is the distance light travels in one year, or approximately 9.5x1012 km). Given the scale model outlined above, how far would a model Proxima Centauri be placed from you? Give your answer in miles and km.arrow_forward
- Please answer parts C and Darrow_forwardPart 3 1. The diameter of the Sun is 1,391,400 km. The diameter of the Moon is 3,474.8 km. Find the ratio, r= Dsa/Dsvan between the sizes. 2. From the point of view of an obs erver on Eanth (consider the Earth as a point-like object), during the eclipse, the Moon covers the Sun exactly. Sketch a picture to illustrate this fact. Use a nuler to get a straight line. Your drawing does not need to be in scale. 3. The Sun is 1 Astronomical Unit (AU) away from the Earth. Find the distance between the Earth and the Moon in AU's using the ratio of similar triangles. Show your work. DEM= AU. Convert this to kilometers. Use 1 AU = 149,600,000 km. DEM = km.arrow_forwardAt present there are 8 planets in the solar system. In the early models, there were only 6 planets. What is the reason behind this? Describe a model of the modern solar system in terms of the number of planets, their arrangement and the model’s center.arrow_forward
- White Dwarf Size II. The white dwarf, Sirius B, contains 0.98 solar mass, and its density is about 2 x 106 g/cm?. Find the radius of the white dwarf in km to three significant digits. (Hint: Density = mass/volume, and the volume of a 4 sphere is Tr.) 3 km Compare your answer with the radii of the planets listed in the Table A-10. Which planet is this white dwarf is closely equal to in size? I Table A-10 I Properties of the Planets ORBITAL PROPERTIES Semimajor Axis (a) Orbital Period (P) Average Orbital Velocity (km/s) Orbital Inclination Planet (AU) (106 km) (v) (days) Eccentricity to Ecliptic Mercury 0.387 57.9 0.241 88.0 47.9 0.206 7.0° Venus 0.723 108 0.615 224.7 35.0 0.007 3.4° Earth 1.00 150 1.00 365.3 29.8 0.017 Mars 1.52 228 1.88 687.0 24.1 0.093 1.8° Jupiter 5.20 779 11.9 4332 13.1 0.049 1.30 Saturn 9.58 1433 29.5 10,759 9.7 0.056 2.5° 30,799 60,190 Uranus 19.23 2877 84.3 6.8 0.044 0.8° Neptune * By definition. 30.10 4503 164.8 5.4 0.011 1.8° PHYSICAL PROPERTIES (Earth = e)…arrow_forwardDirection: Use your knowledge about solving equations to work out to complete the table below. Show your solution with proper units. R° (meters) T R° / T° { (meters) / Planet Average Times of Radius of Revolution (seconds) (seconds) } Planet's Orbit (Planet's year) R T (seconds) (meters) Mercury 5.7869 x 10:0 7.605 x 10 Venus 1.081 x 101 1.941 x 107 Earth 1.4996 x 10" 3.156 x 10 Mars 2.280 x 101 5.936 x 10 Jupiter 7.783 x 10" 3.743 x 10 Saturn 1.426 x 10 9.296 x 10arrow_forwardWe need to create a scale model of the solar system (by shrinking the sun down to the size of a basketball or ~30cm). First, we will need to scale down actual solar system dimensions (planet diameters and average orbital radiuses) by converting our units. There are two blank spaces in the table below. We will effectively fill in the missing data in the next set of questions. Use the example below to help you. Example: What is the scaled diameter of Mercury if the Sun is scaled to the size of a basketball (30 cm)? The actual diameter of Mercury is 4879 km The Sun's diameter is 1392000 km If the Sun is to be reduced to the size of a basketball, then the conversion we need for this equation will be: 30cm1392000km Here is how we run the conversion: 4879km×30cm1392000km=0.105cm or 0.11cm if we were to round our answer. This means that if the sun in our model is the size of a basketball, Mercury is the size of a grain of sand. We can also see by looking at the table, that we would…arrow_forward
- The Earth is about 12800 (1.28 x 104) km in diameter. If you drew the Earth to scale on your model (model is attatched here) how many centimeters across would the dot measure? Show your work here: Scaled diameter of Earth on model = _____________ cm. Based on this calculation, is your model’s scale a good one for showing the relative sizes of the planets? Thanks so much :)arrow_forwardRead this main idea: The sun is the center of our solar system. Choose three details that go with the main idea. The sun's gravity holds the planets in place. It provides them with heat and light. The largest stars, called supergiants, are 1,500 times bigger than our sun. It takes Earth 365 days to orbit the sun. Jupiter takes 12 years! Our sun is not the largest or hottest star. It is a medium sized yellow star. Radio telescopes use radio waves to show stars in great detail. Astronomers long ago and today use star charts to map star locations. All of the planets in our solar system revolve around one star-our sun. Stars can be blue, white, yellow, or red. Blue stars are the hottest. A reflector telescope bounces star light through mirrors.arrow_forwardIt is important to have an idea about the distances between and relative sizes of celestial objects in the solar system. In Part 1 we will pretend to shrink the solar system until its center piece, the Sun, is 67.3 cm in diameter. This will represent the Sun which is 1,390,000 km in diameter. The scale of our model is thus: 67.3 cm = 4.84 x 10-5 cm km Scale 1, 390, 000 km To find the size or distance between objects in centimeters for the model, simply multiply the actual size or distance in kilometers by the scale factor above. 1. Fill in following table: Quantity Actual Distance (km) Model Distance (cm) Diameter of Sun 1,390,000 Diameter of Earth 12,760 Diameter of Moon 3,480 Distance Between Earth and Sun 1.5 x 108 Distance Between Earth and Moon 384,000 Distance to Proxima Centauri 3.97 x 1013arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY