Connect with LearnSmart for Krauskopf: The Physical Universe, 16e
16th Edition
ISBN: 9781259663895
Author: KRAUSKOPF, Konrad B.
Publisher: Mcgraw-hill Higher Education (us)
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3, Problem 53E
A 30-kg girl who is running at 3 m/s jumps on a stationary 10-kg sled on a frozen lake. How fast does the sled with the girl on it then move?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The driver of a car (1100 kg) traveling at 30 m/s on dry concrete sees a deer in the distance and slams on the brakes and skids to a stop. How far does the car travel before stopping?
The best way to get an old-fashioned wooden sled (which can be quite heavy) going on the snow is to get a good running start and then jump on the sled. Bailey is doing just that, running at 4.0 m/s and launching her 26 kg body onto the 5.9 kg sled. How fast is the sled moving just after she lands on it?
1 2500kg railroad car moving with a speed of 3 m/s is linked with a 3500 kg railroad car moving away from the first car with a speed by 1 m/s. Both are moving along a straight track. Find the speed of the two cars just after they link up.
Chapter 3 Solutions
Connect with LearnSmart for Krauskopf: The Physical Universe, 16e
Ch. 3 - Which of the following is not a unit of work? a....Ch. 3 - An object at rest may have a. velocity b. momentum...Ch. 3 - A moving object must have which one or more of the...Ch. 3 - When the momentum of a moving object is increased,...Ch. 3 - The total amount of energy (including the rest...Ch. 3 - When the speed of a moving object is halved, a....Ch. 3 - Two balls, one of mass 5 kg and the other of mass...Ch. 3 - A bomb dropped from an airplane explodes in...Ch. 3 - The operation of a rocket is based upon a. pushing...Ch. 3 - A spinning skater whose arms are at her sides then...
Ch. 3 - Prob. 11MCCh. 3 - The formula 12 mv2 for kinetic energy a. is the...Ch. 3 - A spacecraft has left the earth and is moving...Ch. 3 - The upper limit to the speed of an object with...Ch. 3 - It is not true that a. light is affected by...Ch. 3 - Albert Einstein did not discover that a. the...Ch. 3 - The work done in holding a 50-kg object at a...Ch. 3 - The work done in lifting 30 kg of bricks to a...Ch. 3 - A total of 4900 J is used to lift a 50-kg mass....Ch. 3 - The work a 300-W electric grinder can do in 5.0...Ch. 3 - A 150-kg yak has an average power output of 120 W....Ch. 3 - A 40-kg boy runs up a flight of stairs 4 m high in...Ch. 3 - Car A has a mass of 1000 kg and is moving at 60...Ch. 3 - A 1-kg object has a potential energy of 1 J...Ch. 3 - A 1-kg object has kinetic energy of 1 J when its...Ch. 3 - The 2-kg blade of an ax is moving at 60 m/s when...Ch. 3 - The highest MA that can be obtained by a system of...Ch. 3 - A machine has a MA of 6.0. The work input needed...Ch. 3 - A person uses a force of 300 N to pry up one end...Ch. 3 - A 1-kg ball is thrown in the air. When it is 10 m...Ch. 3 - A 10,000-kg freight car moving at 2 m/s collides...Ch. 3 - A 30-kg girl and a 25-kg boy are standing on...Ch. 3 - An object has a rest energy of 1 J when its mass...Ch. 3 - The smallest part of the total energy of the ball...Ch. 3 - The lightest particle in an atom is an electron,...Ch. 3 - A person holds a 10-kg package 1.2 m above the...Ch. 3 - Under what circumstances (if any) is no work done...Ch. 3 - The sun exerts a gravitational force of 4.0 1028...Ch. 3 - A crate is pushed across a horizontal floor at...Ch. 3 - A total of 490 J of work is needed to lift a body...Ch. 3 - A woman eats a cupcake and proposes to work off...Ch. 3 - The acceleration of gravity on the surface of Mars...Ch. 3 - The kilowatt-hour is a unit of what physical...Ch. 3 - The motor of a boat develops 60 kW when the boats...Ch. 3 - How much power must the legs of a 70-kg man...Ch. 3 - A weightlifter raises a 70-kg barbell from the...Ch. 3 - An escalator 14 m long is carrying a 70-kg person...Ch. 3 - A 700-kg horse whose power output is 1.0 hp is...Ch. 3 - A persons metabolic processes can usually operate...Ch. 3 - A crane whose motor has a power input of 5.0 kW...Ch. 3 - A total of 104 kg of water per second flows over a...Ch. 3 - Which of these energies might correspond to the KE...Ch. 3 - What is the speed of an 800-kg car whose KE is 250...Ch. 3 - A moving object whose initial KE is 10 J is...Ch. 3 - Is the work needed to bring a cars speed from 0 to...Ch. 3 - A 1-kg salmon is hooked by a fisherman and it...Ch. 3 - Prob. 22ECh. 3 - How long will it take a 1000-kg car with a power...Ch. 3 - Does every moving body possess kinetic energy?...Ch. 3 - As we will learn in Chap. 6, electric charges of...Ch. 3 - A 60-kg woman jumps off a wall 80 cm high and...Ch. 3 - Why does a nail become hot when it is hammered...Ch. 3 - A 3-kg stone is dropped from a height of 100 m....Ch. 3 - Prob. 29ECh. 3 - Prob. 30ECh. 3 - A ball is dropped from a height of 1 m and loses...Ch. 3 - A person sitting under a coconut palm is struck by...Ch. 3 - A skier is sliding downhill at 8 m/s when she...Ch. 3 - A force of 10 N is used to lift a 600-g ball from...Ch. 3 - A person uses a force of 49 N to raise a 30-kg...Ch. 3 - Prob. 36ECh. 3 - The human forearm is a class III lever. Find the...Ch. 3 - A ramp 20 m long slopes down 1.2 m to the edge of...Ch. 3 - In an effort to lose weight, a person runs 5 km...Ch. 3 - An 80-kg crate is raised 2 m from the ground by a...Ch. 3 - An 800-kg car coasts down a hill 40 m high with...Ch. 3 - (a) When an object at rest explodes into two parts...Ch. 3 - A golf ball and a Ping-Pong ball are dropped in a...Ch. 3 - Is it possible for an object to have more kinetic...Ch. 3 - What happens to the momentum of a car when it...Ch. 3 - The speed of an airplane doubles in flight. (a)...Ch. 3 - When the kinetic energy of an object is doubled,...Ch. 3 - What, if anything, happens to the speed of a...Ch. 3 - A ball of mass m rolling on a smooth surface...Ch. 3 - A railway car is at rest on a frictionless track....Ch. 3 - An empty dump truck coasts freely with its engine...Ch. 3 - A boy throws a 4-kg pumpkin at 8 m/s to a 40-kg...Ch. 3 - A 30-kg girl who is running at 3 m/s jumps on a...Ch. 3 - A 70-kg man and a 50-kg woman are in a 60-kg boat...Ch. 3 - The 176-g head of a golf club is moving at 45 m/s...Ch. 3 - A 40-kg skater moving at 4 m/s overtakes a 60-kg...Ch. 3 - The two skaters of Exercise 56 are moving in...Ch. 3 - A 1000-kg car moving east at 80 km/h collides...Ch. 3 - As the polar ice caps melt, the length of the day...Ch. 3 - All helicopters have two rotors. Some have both...Ch. 3 - The earthquake that caused the Indian Ocean...Ch. 3 - What are the two postulates from which Einstein...Ch. 3 - The theory of relativity predicts a variety of...Ch. 3 - What physical quantity will all observers always...Ch. 3 - The length of a rod is measured by several...Ch. 3 - Under what circumstances does it become...Ch. 3 - Why is it impossible for an object to move faster...Ch. 3 - The potential energy of a golf ball in a hole is...Ch. 3 - What is the effect on the law of conservation of...Ch. 3 - A certain walking person uses energy at an average...Ch. 3 - One kilogram of water at 0C contains 335 kJ of...Ch. 3 - When 1 g of gasoline is burned in an engine, about...Ch. 3 - Approximately 5.4 106 J of chemical energy is...Ch. 3 - Approximately 4 109 kg of matter is converted...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 57.0-g tennis ball is traveling straight at a player at 21.0 m/s. The player volleys the ball straight back at 25.0 m/s. If the ball remains in contact with the racket for 0.060 s, what average force acts on the ball? (a) 22.6 N (b) 32.5 N (c) 43.7 N (d) 72.1 N (e) 102 Narrow_forwardA 2000-kg railway freight car coasts at 4.4 m/s underneath a grain terminal, which dumps grain directly down into the freight car. If the speed of the loaded freight car must not go below 3.0 m/s, what is the maximum mass of grain that it can accept?arrow_forwardThis is a symbolic version of Problem 23. A girl of mass mG is standing on a plank of mass mp. Both are originally at rest on a frozen lake that constitutes a frictionless, flat surface. The girl begins to walk along the plank at a constant velocity vGP to the right relative to the plank. (The subscript GP denotes the girl relative to plank.) (a) What is the velocity vPI of the plank relative to the surface of the ice? (b) What is the girls velocity vGI relative to the ice surface?arrow_forward
- A space probe, initially at rest, undergoes an internal mechanical malfunction and breaks into three pieces. One piece of mass ml = 48.0 kg travels in the positive x-direction at 12.0 m/s, and a second piece of mass m2 = 62.0 kg travels in the xy-plane at an angle of 105 at 15.0 m/s. The third piece has mass m3 = 112 kg. (a) Sketch a diagram of the situation, labeling the different masses and their velocities, (b) Write the general expression for conservation of momentum in the x- and y-directions in terms of m1, m2, m3, v1, v2 and v3 and the sines and cosines of the angles, taking to be the unknown angle, (c) Calculate the final x-components of the momenta of m1 and m2. (d) Calculate the final y-components of the momenta of m1 and m2. (e) Substitute the known momentum components into the general equations of momentum for the x- and y-directions, along with the known mass m3. (f) Solve the two momentum equations for v3 cos and v3 sin , respectively, and use the identity cos2 + sin2 = 1 to obtain v3. (g) Divide the equation for v3 sin by that for v3 cos to obtain tan , then obtain the angle by taking the inverse tangent of both sides, (h) In general, would three such pieces necessarily have to move in the same plane? Why?arrow_forwardWhat external force is responsible for changing the momentum of a car moving along a horizontal road?arrow_forwardA 57.0-g tennis ball is traveling straight at a player at 21.0 m/s. The player volleys the ball straight back at 25.0 m/s. If the ball remains in contact with the racket for 0.060 0 s, what average force acts on the ball? (a) 22.6 N (b) 32.5 N (c) 43.7 N (d) 72.1 N (e) 102 Narrow_forward
- A hockey puck of mass 150 g is sliding due east on a frictionless table with a speed of 10 m/s. Suddenly, a constant force of magnitude 5 N and direction due north is applied to the puck for 1.5 s. Find the north and east components of the momentum at the end of the 1.3-s interval.arrow_forwardA 100-g firecracker is launched vertically into the air and explodes into two pieces at the peak of its trajectory. If a 72-g piece is projected horizontally to the left at 20 m/s, what is the speed and direction of the other piece?arrow_forwardYour physical education teacher throws a baseball to you at a certain speed and you catch it. The teacher is next going to throw you a medicine ball whose mass is ten times the mass of the baseball. You are given the following choices: You can have the medicine ball thrown with (a) the same speed as the baseball, (b) the same momentum, or (c) the same kinetic energy. Rank these choices from easiest to hardest to catch.arrow_forward
- A rocket has total mass Mi = 360 kg, including Mfuel = 330 kg of fuel and oxidizer. In interstellar space, it starts from rest at the position x = 0, turns on its engine at time t = 0, and puts out exhaust with relative speed ve = 1 500 m/s at the constant rate k = 2.50 kg/s. The fuel will last for a burn time of Tb = Mfuel/k = 330 kg/(2.5 kg/s) = 132 s. (a) Show that during the burn the velocity of the rocket as a function of time is given by v(t)=veln(1ktMi) (b) Make a graph of the velocity of the rocket as a function of time for times running from 0 to 132 s. (c) Show that the acceleration of the rocket is a(t)=kveMikt (d) Graph the acceleration as a function of time. (c) Show that the position of the rocket is x(t)=ve(Mikt)ln(1ktMi)+vet (f) Graph the position during the burn as a function of time.arrow_forwardA man sees a 38.9 Kg cart about to bump into a wall of 1.3 m/s. If the cart is 0.124 m from the wall when he grabs it, how much force must he apply to stop it before it hits the wall?arrow_forwardA 5.0 kg dog stands on an 18 kg canoe at distance D = 6.1 m from the shore. The dog walks 2.4 m along the canoe toward the shore and then stops. How far from the shore does the dog end up.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Impulse Derivation and Demonstration; Author: Flipping Physics;https://www.youtube.com/watch?v=9rwkTnTOB0s;License: Standard YouTube License, CC-BY