Connect with LearnSmart for Krauskopf: The Physical Universe, 16e
16th Edition
ISBN: 9781259663895
Author: KRAUSKOPF, Konrad B.
Publisher: Mcgraw-hill Higher Education (us)
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3, Problem 42E
(a) When an object at rest explodes into two parts that fly apart, must they move in exactly opposite directions? (b) When a moving object strikes a stationary one, must they move off in exactly opposite directions?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(1) Two objects, moving towards each other with speed v. collide head on, stick together, and then move on
with speed 1/4 after the collision.
(a) What is the ratio of the kinetic energy after the collision to the kinetic energy before the collision?
(answer: 1/16)
(b) What is the ratio of the mass of the more massive object to the mass of the less massive object? (answer:
5/3)
A 1.0 kg mass with a speed of 4.5 m/s strikes a 2.0 kg mass at rest. For a completely
inelastic collision, find:
(a) The speed of the masses after the collision.
(b) The change in kinetic energy.
(c) The momentum after the collision.
A particle A of mass m with a factor of y of 2 makes an inelastic
collision with a particle B of mass 4m, which is initially at rest. As a
result of the collision, particle C is formed.
a) Find the speed of particle C formed as a result of the collision in
terms of the speed of light in vacuum.
b) Find the mass of particle C formed as a result of the collision, in m.
Chapter 3 Solutions
Connect with LearnSmart for Krauskopf: The Physical Universe, 16e
Ch. 3 - Which of the following is not a unit of work? a....Ch. 3 - An object at rest may have a. velocity b. momentum...Ch. 3 - A moving object must have which one or more of the...Ch. 3 - When the momentum of a moving object is increased,...Ch. 3 - The total amount of energy (including the rest...Ch. 3 - When the speed of a moving object is halved, a....Ch. 3 - Two balls, one of mass 5 kg and the other of mass...Ch. 3 - A bomb dropped from an airplane explodes in...Ch. 3 - The operation of a rocket is based upon a. pushing...Ch. 3 - A spinning skater whose arms are at her sides then...
Ch. 3 - Prob. 11MCCh. 3 - The formula 12 mv2 for kinetic energy a. is the...Ch. 3 - A spacecraft has left the earth and is moving...Ch. 3 - The upper limit to the speed of an object with...Ch. 3 - It is not true that a. light is affected by...Ch. 3 - Albert Einstein did not discover that a. the...Ch. 3 - The work done in holding a 50-kg object at a...Ch. 3 - The work done in lifting 30 kg of bricks to a...Ch. 3 - A total of 4900 J is used to lift a 50-kg mass....Ch. 3 - The work a 300-W electric grinder can do in 5.0...Ch. 3 - A 150-kg yak has an average power output of 120 W....Ch. 3 - A 40-kg boy runs up a flight of stairs 4 m high in...Ch. 3 - Car A has a mass of 1000 kg and is moving at 60...Ch. 3 - A 1-kg object has a potential energy of 1 J...Ch. 3 - A 1-kg object has kinetic energy of 1 J when its...Ch. 3 - The 2-kg blade of an ax is moving at 60 m/s when...Ch. 3 - The highest MA that can be obtained by a system of...Ch. 3 - A machine has a MA of 6.0. The work input needed...Ch. 3 - A person uses a force of 300 N to pry up one end...Ch. 3 - A 1-kg ball is thrown in the air. When it is 10 m...Ch. 3 - A 10,000-kg freight car moving at 2 m/s collides...Ch. 3 - A 30-kg girl and a 25-kg boy are standing on...Ch. 3 - An object has a rest energy of 1 J when its mass...Ch. 3 - The smallest part of the total energy of the ball...Ch. 3 - The lightest particle in an atom is an electron,...Ch. 3 - A person holds a 10-kg package 1.2 m above the...Ch. 3 - Under what circumstances (if any) is no work done...Ch. 3 - The sun exerts a gravitational force of 4.0 1028...Ch. 3 - A crate is pushed across a horizontal floor at...Ch. 3 - A total of 490 J of work is needed to lift a body...Ch. 3 - A woman eats a cupcake and proposes to work off...Ch. 3 - The acceleration of gravity on the surface of Mars...Ch. 3 - The kilowatt-hour is a unit of what physical...Ch. 3 - The motor of a boat develops 60 kW when the boats...Ch. 3 - How much power must the legs of a 70-kg man...Ch. 3 - A weightlifter raises a 70-kg barbell from the...Ch. 3 - An escalator 14 m long is carrying a 70-kg person...Ch. 3 - A 700-kg horse whose power output is 1.0 hp is...Ch. 3 - A persons metabolic processes can usually operate...Ch. 3 - A crane whose motor has a power input of 5.0 kW...Ch. 3 - A total of 104 kg of water per second flows over a...Ch. 3 - Which of these energies might correspond to the KE...Ch. 3 - What is the speed of an 800-kg car whose KE is 250...Ch. 3 - A moving object whose initial KE is 10 J is...Ch. 3 - Is the work needed to bring a cars speed from 0 to...Ch. 3 - A 1-kg salmon is hooked by a fisherman and it...Ch. 3 - Prob. 22ECh. 3 - How long will it take a 1000-kg car with a power...Ch. 3 - Does every moving body possess kinetic energy?...Ch. 3 - As we will learn in Chap. 6, electric charges of...Ch. 3 - A 60-kg woman jumps off a wall 80 cm high and...Ch. 3 - Why does a nail become hot when it is hammered...Ch. 3 - A 3-kg stone is dropped from a height of 100 m....Ch. 3 - Prob. 29ECh. 3 - Prob. 30ECh. 3 - A ball is dropped from a height of 1 m and loses...Ch. 3 - A person sitting under a coconut palm is struck by...Ch. 3 - A skier is sliding downhill at 8 m/s when she...Ch. 3 - A force of 10 N is used to lift a 600-g ball from...Ch. 3 - A person uses a force of 49 N to raise a 30-kg...Ch. 3 - Prob. 36ECh. 3 - The human forearm is a class III lever. Find the...Ch. 3 - A ramp 20 m long slopes down 1.2 m to the edge of...Ch. 3 - In an effort to lose weight, a person runs 5 km...Ch. 3 - An 80-kg crate is raised 2 m from the ground by a...Ch. 3 - An 800-kg car coasts down a hill 40 m high with...Ch. 3 - (a) When an object at rest explodes into two parts...Ch. 3 - A golf ball and a Ping-Pong ball are dropped in a...Ch. 3 - Is it possible for an object to have more kinetic...Ch. 3 - What happens to the momentum of a car when it...Ch. 3 - The speed of an airplane doubles in flight. (a)...Ch. 3 - When the kinetic energy of an object is doubled,...Ch. 3 - What, if anything, happens to the speed of a...Ch. 3 - A ball of mass m rolling on a smooth surface...Ch. 3 - A railway car is at rest on a frictionless track....Ch. 3 - An empty dump truck coasts freely with its engine...Ch. 3 - A boy throws a 4-kg pumpkin at 8 m/s to a 40-kg...Ch. 3 - A 30-kg girl who is running at 3 m/s jumps on a...Ch. 3 - A 70-kg man and a 50-kg woman are in a 60-kg boat...Ch. 3 - The 176-g head of a golf club is moving at 45 m/s...Ch. 3 - A 40-kg skater moving at 4 m/s overtakes a 60-kg...Ch. 3 - The two skaters of Exercise 56 are moving in...Ch. 3 - A 1000-kg car moving east at 80 km/h collides...Ch. 3 - As the polar ice caps melt, the length of the day...Ch. 3 - All helicopters have two rotors. Some have both...Ch. 3 - The earthquake that caused the Indian Ocean...Ch. 3 - What are the two postulates from which Einstein...Ch. 3 - The theory of relativity predicts a variety of...Ch. 3 - What physical quantity will all observers always...Ch. 3 - The length of a rod is measured by several...Ch. 3 - Under what circumstances does it become...Ch. 3 - Why is it impossible for an object to move faster...Ch. 3 - The potential energy of a golf ball in a hole is...Ch. 3 - What is the effect on the law of conservation of...Ch. 3 - A certain walking person uses energy at an average...Ch. 3 - One kilogram of water at 0C contains 335 kJ of...Ch. 3 - When 1 g of gasoline is burned in an engine, about...Ch. 3 - Approximately 5.4 106 J of chemical energy is...Ch. 3 - Approximately 4 109 kg of matter is converted...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In an elastic collision of two particles with masses m1 and m2, the initial velocities are u1 and u2 = u1. If the initial kinetic energies of the two particles are equal, find the conditions on u1/u2 and m1/m2 such that m1 is at rest after the collision. Examine both cases for the sign of .arrow_forward(a) If the system's kinetic energy, as measured from the Earth reference frame, decreases by 20% because of the collision, what are the final velocities of the balls? (b) What change in internal energy has occurred? (c) An observer watches this collision from a reference frame moving at a velocity of 15 m/ s to the east relative to the Earth reference frame. What changes in kinetic energy does this observer measure?arrow_forwardErnest Rutherford (the first New Zealander to be awarded the Nobel Prize in Chemistry) demonstrated that nuclei were very small and dense by scattering 197 helium-4 nuclei (“He) from gold-197 nuclei (19 Au). The energy of the incoming helium nucleus was 7.91 x 1013 J, and the masses of the helium and gold -25 nuclei were 6.68 x 10-27 kg and 3.29 × 10¯ kg, respectively (note that their mass ratio is 4 to 197. Assume that the helium nucleus travels in the +x-direction before the collision.) (a) If a helium nucleus scatters to an angle of 108° during an elastic collision with a gold nucleus, calculate the helium nucleus' final speed (in m/s) and the final velocity (magnitude in m/s and direction counterclockwise from the +x-axis) of the gold nucleus. 120° He nucleus Gold nucleus 4He speed m/s 197, Au velocity m/s 197 Au direction ° counterclockwise from the +x-axis (b) What is the final kinetic energy (in J) of the helium nucleus?arrow_forward
- speed as the horse. (CSS) 4 times as fast as the horse. (B) twice as fast as the horse. (D) 16 times as fast as the horse. 5)particle A is travelling at a velocity of [ ]m/s. It collides with particle B which has a velocity of [o ]m/s. The particle move together. The mass of particle A is 2kg and the mass of particle B is 3kg. Find the velocity of the combined particles after the collision. (A) [ ]m/s (B) [8]m/s 8.4. 4 (C) m/s 50 (D) [ - 16 m/s 4 20 6)Which of the following is NOT true about conservation of linear momentum. (A)The impulse becomes to zero. (C)The total momentum is constant. (B)The change in momentum is constant. (D)The change in momentum is zero 7)Two billiard balls of equal mass undergo a perfectly elastic head - on collision. If the speed of one ball was initially 2.00m/s, and of the other 3.00m/s in the opposite direction, what will be their speeds VI & V2 after the collision respectively? (A)2m/s & - 3m/s (B) -3m/s & 2m/s (C)2m/s & 3m/s (D)-3m/s &-2m's By Yishak…arrow_forwardAs shown in the figure below, a bullet is fired at and passes through a piece of target paper suspended by a massless string. The bullet has a mass m, a speed v before the collision with the target, and a speed (0.476)v after passing through the target. PAC M M (a) Before collision (b) After collision The collision is inelastic and during the collision, the amount of energy lost is equal to a fraction [(0.253)KE, Pc] of the kinetic energy of the bullet before the collision. Determine the mass M of the target and the speed V of the target the instant after the collision in terms of the mass m of the bullet and speed v of the bullet before the collision. (Express your answers to at least 3 decimals.) V = M =arrow_forwardAs shown in the figure below, a bullet is fired at and passes through a piece of target paper suspended by a massless string. The bullet has a mass m, a speed v before the collision with the target, and a speed (0.506)v after passing through the target. The collision is inelastic and during the collision, the amount of energy lost is equal to a fraction [(0.443)KEb Bc) of the kinetic energy of the bullet before the collision. Determine the mass Mof the target and the speed Vof the target the instant after the collision in terms of the mass mof the bullet and speed vof the bullet before the collision. (Express your answers to at least 3 decimals.) V= vM= m M M (a) Before collision (b) After collisionarrow_forward
- As shown in the figure below, a bullet is fired at and passes through a piece of target paper suspended by a massless string. The bullet has a mass m, a speed v before the collision with the target, and a speed (0.516)v after passing through the target. (a) Before collision M V m PHAC The collision is inelastic and during the collision, the amount of energy lost is equal to fraction [(0.423)KE BC] of the kinetic energy of the bullet before the collision. Determine the mass M of the target and the speed V of the target the instant after the collision in terms of the mass m of the bullet and speed v of the bullet before the collision. (Express your answers to at least 3 decimals.) V = M = M (b) After collisionarrow_forward.An object of mass m traveling at speed v crashes into another object of mass 2m that is at rest. If the collision is perfectly inelastic, what is the speed of the combined objects after the collision?arrow_forward(a) At what speed (in m/s) would a 2.67× 104 kg airplane have to fly to have a momentum of 1.21 x 10° kg · m/s (similar to the momentum of a large moving ship)? m/s (b) What is the plane's momentum (in kg · m/s) when it is taking off at a speed of 58.8 m/s? kg • m/s (c) If the ship is an aircraft carrier that launches these airplanes with a catapult, discuss the implications of your answer to (b) as it relates to recoil effects of the catapult on the ship. O Since the momentum of the airplane is much larger than that of the ship, the ship will experience a significant recoil effect from the catapult. O ince the momentum of the airplane is much smaller than that of the ship, the ship will experience a significant recoil effect from the catapult. O Since the momentum of the airplane is much larger than that of the ship, the ship will not experience a significant recoil effect from the catapult. O Since the momentum of the airplane is much smaller than that of the ship, the ship will not…arrow_forward
- (A) with the same speed as the horse. (CSS) 4 times as fast as the horse. (B) twice as fast as the horse. (D) 16 times as fast as the horse. 5 5)particle A is travelling at a velocity of [ ,]m/s. It collides with particle B which has a velocity of -2 10 m/s. The particle move together. The mass of particle A is 2kg and the mass of particle B is 3kg. 8 Find the velocity of the combined particles after the collision. 8. (A) [ Im/s 42. (C) ]m/s 50 (B)[8.4, (D) [_16m/s 6)Which of the following is NOT true about conservation of linear momentum. (A)The impulse becomes to zero. (C)The total momentum is constant. (B)The change in momentum is constant. (D)The change in momentum is zero 7)Two billiard balls of equal mass undergo a perfectly elastic head – on collision. If the speed of one ball was initially 2.00m/s, and of the other 3.00m/s in the opposite direction, what will be their speeds V1 & V2 after the collision respectively? (A)2m/s & - 3m/s (B) -3m/s & 2m/s (C)2m/s & 3m/s (D)-3m/s &…arrow_forwardSuppose a plate with uniform density p= 1 occupies the region between the graph of y = cos x + 1 and the x- axis in the interval [0, 7]. Then the x-coordinate of the center of mass of this plate is a) 0.869 b) 0.915 c) 0.750 d) 0.934 O e) 0.847 Of) 0.806arrow_forwardA particle of mass 4m which is at rest explodes into three fragments. Two of the fragments each of mass m are found to move with a speed v each in mutually perpendicular directions. The total energy released in the process of explosion is.....?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Momentum | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=DxKelGugDa8;License: Standard YouTube License, CC-BY