A chinook salmon has a maximum underwater speed of 3.58 m/s, but it can jump out of water with a speed of 6.26 m/s. To move upstream past a waterfall, the salmon does not need to jump to the top of the fall, but only to a point in the fall where the water speed is less than 3.58 m/s; it can then swim up the fall for the remaining distance. Because the salmon must make forward progress in the water, let’s assume it can swim to the top if the water speed is 3.00 m/s. If water has a speed of 1.50 m/s as it passes over a ledge, how far below the ledge will the water be moving with a speed of 3.00 m/s? (Note that water undergoes projectile motion once it leaves the ledge.) If the salmon is able to jump vertically upward from the base of the fall, what is the maximum height of waterfall that the salmon can clear?
Displacement, Velocity and Acceleration
In classical mechanics, kinematics deals with the motion of a particle. It deals only with the position, velocity, acceleration, and displacement of a particle. It has no concern about the source of motion.
Linear Displacement
The term "displacement" refers to when something shifts away from its original "location," and "linear" refers to a straight line. As a result, “Linear Displacement” can be described as the movement of an object in a straight line along a single axis, for example, from side to side or up and down. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Linear displacement is usually measured in millimeters or inches and may be positive or negative.
A chinook salmon has a maximum underwater speed of 3.58 m/s, but it can jump out of water with a speed of 6.26 m/s. To move upstream past a waterfall, the salmon does not need to jump to the top of the fall, but only to a point in the fall where the water speed is less than 3.58 m/s; it can then swim up the fall for the remaining distance. Because the salmon must make forward progress in the water, let’s assume it can swim to the top if the water speed is 3.00 m/s. If water has a speed of 1.50 m/s as it passes over a ledge, how far below the ledge will the water be moving with a speed of 3.00 m/s? (Note that water undergoes projectile motion once it leaves the ledge.) If the salmon is able to jump vertically upward from the base of the fall, what is the maximum height of waterfall that the salmon can clear?
Step by step
Solved in 2 steps with 2 images