A group of students celebrate their first year of medical school with a hot-air balloon ride, which is rising upward with a constant speed of 3.0 m/s. When the balloon is 3.50 m above the ground, one of the students who is taking a selfie with the other students accidentally drops her smart phone over the side of the balloon (fortunately with a OtterBox case). With what speed would the phone hit the ground in m/s? Note that the displacement of the phone dropping 3.50 m would be - 3.50 m. For the same situation as Question 9, how long in seconds would the smart phone be in the air before it hits the ground?
A group of students celebrate their first year of medical school with a hot-air balloon ride, which is rising upward with a constant speed of 3.0 m/s. When the balloon is 3.50 m above the ground, one of the students who is taking a selfie with the other students accidentally drops her smart phone over the side of the balloon (fortunately with a OtterBox case). With what speed would the phone hit the ground in m/s? Note that the displacement of the phone dropping 3.50 m would be - 3.50 m. For the same situation as Question 9, how long in seconds would the smart phone be in the air before it hits the ground?
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Concept explainers
Topic Video
Question
A group of students celebrate their first year of medical school with a hot-air balloon ride, which is rising upward with a constant speed of 3.0 m/s. When the balloon is 3.50 m above the ground, one of the students who is taking a selfie with the other students accidentally drops her smart phone over the side of the balloon (fortunately with a OtterBox case). With what speed would the phone hit the ground in m/s? Note that the displacement of the phone dropping 3.50 m would be - 3.50 m.
For the same situation as Question 9, how long in seconds would the smart phone be in the air before it hits the ground?
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you

College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning

University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press

College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning

University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley

College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON