(a)
Interpretation:
The more acidic compound from each given pair of compounds should be identified in each of the given anions.
Concept introduction:
Acidic strength in the molecule depends on the stability of the Conjugate anion.
The anion involving in resonance in a molecule will have greater stability when compared to molecules having single anion. In resonance the delocalization of anion would take place.
In a molecule where the anion is carried by a more electronegative atom will show more stability. The greater electronegativity makes anion closer to the nucleus hence more stabilized. If the negative charge located atom is larger enough to hold the negative charge, then anion attains more stability.
The carbanion stability varies with the percentage of ‘s’character in its hybridization state. Since the s-orbital is closer to nucleus than p-orbital, the hybridized orbital having more‘s’ character will have more stability to accommodate anion (due to high nuclear charge). The order is .
Inductive effect in a compound will affect the anionic stability. +I groups in the compound stabilizes the negative charge of anion.
To find: the more acidic compound from each given pair of compounds.
(b)
Interpretation:
The more acidic compound from each given pair of compounds should be identified in each of the given anions.
Concept introduction:
Acidic strength in the molecule depends on the stability of the Conjugate anion.
The anion involving in resonance in a molecule will have greater stability when compared to molecules having single anion. In resonance the delocalization of anion would take place.
In a molecule where the anion is carried by a more electronegative atom will show more stability. The greater electronegativity makes anion closer to the nucleus hence more stabilized. If the negative charge located atom is larger enough to hold the negative charge, then anion attains more stability.
The carbanion stability varies with the percentage of ‘s’character in its hybridization state. Since the s-orbital is closer to nucleus than p-orbital, the hybridized orbital having more‘s’ character will have more stability to accommodate anion (due to high nuclear charge). The order is .
Inductive effect in a compound will affect the anionic stability. +I groups in the compound stabilizes the negative charge of anion.
To find: the more acidic compound from each given pair of compounds.
(c)
Interpretation:
The more acidic compound from each given pair of compounds should be identified in each of the given anions.
Concept introduction:
Acidic strength in the molecule depends on the stability of the Conjugate anion.
The anion involving in resonance in a molecule will have greater stability when compared to molecules having single anion. In resonance the delocalization of anion would take place.
In a molecule where the anion is carried by a more electronegative atom will show more stability. The greater electronegativity makes anion closer to the nucleus hence more stabilized. If the negative charge located atom is larger enough to hold the negative charge, then anion attains more stability.
The carbanion stability varies with the percentage of ‘s’character in its hybridization state. Since the s-orbital is closer to nucleus than p-orbital, the hybridized orbital having more‘s’ character will have more stability to accommodate anion (due to high nuclear charge). The order is .
Inductive effect in a compound will affect the anionic stability. +I groups in the compound stabilizes the negative charge of anion.
To find: the more acidic compound from each given pair of compounds.
(d)
Interpretation:
The more acidic compound from each given pair of compounds should be identified in each of the given anions.
Concept introduction:
Acidic strength in the molecule depends on the stability of the Conjugate anion.
The anion involving in resonance in a molecule will have greater stability when compared to molecules having single anion. In resonance the delocalization of anion would take place.
In a molecule where the anion is carried by a more electronegative atom will show more stability. The greater electronegativity makes anion closer to the nucleus hence more stabilized. If the negative charge located atom is larger enough to hold the negative charge, then anion attains more stability.
The carbanion stability varies with the percentage of ‘s’character in its hybridization state. Since the s-orbital is closer to nucleus than p-orbital, the hybridized orbital having more‘s’ character will have more stability to accommodate anion (due to high nuclear charge). The order is .
Inductive effect in a compound will affect the anionic stability. +I groups in the compound stabilizes the negative charge of anion.
To find: the more acidic compound from each given pair of compounds.
(e)
Interpretation:
The more acidic compound from each given pair of compounds should be identified in each of the given anions.
Concept introduction:
Acidic strength in the molecule depends on the stability of the Conjugate anion.
The anion involving in resonance in a molecule will have greater stability when compared to molecules having single anion. In resonance the delocalization of anion would take place.
In a molecule where the anion is carried by a more electronegative atom will show more stability. The greater electronegativity makes anion closer to the nucleus hence more stabilized. If the negative charge located atom is larger enough to hold the negative charge, then anion attains more stability.
The carbanion stability varies with the percentage of ‘s’character in its hybridization state. Since the s-orbital is closer to nucleus than p-orbital, the hybridized orbital having more‘s’ character will have more stability to accommodate anion (due to high nuclear charge). The order is .
Inductive effect in a compound will affect the anionic stability. +I groups in the compound stabilizes the negative charge of anion.
To find: the more acidic compound from each given pair of compounds.
(f)
Interpretation:
The more acidic compound from each given pair of compounds should be identified in each of the given anions.
Concept introduction:
Acidic strength in the molecule depends on the stability of the Conjugate anion.
The anion involving in resonance in a molecule will have greater stability when compared to molecules having single anion. In resonance the delocalization of anion would take place.
In a molecule where the anion is carried by a more electronegative atom will show more stability. The greater electronegativity makes anion closer to the nucleus hence more stabilized. If the negative charge located atom is larger enough to hold the negative charge, then anion attains more stability.
The carbanion stability varies with the percentage of ‘s’character in its hybridization state. Since the s-orbital is closer to nucleus than p-orbital, the hybridized orbital having more‘s’ character will have more stability to accommodate anion (due to high nuclear charge). The order is .
Inductive effect in a compound will affect the anionic stability. +I groups in the compound stabilizes the negative charge of anion.
To find: the more acidic compound from each given pair of compounds.
(g)
Interpretation:
The more acidic compound from each given pair of compounds should be identified in each of the given anions.
Concept introduction:
Acidic strength in the molecule depends on the stability of the Conjugate anion.
The anion involving in resonance in a molecule will have greater stability when compared to molecules having single anion. In resonance the delocalization of anion would take place.
In a molecule where the anion is carried by a more electronegative atom will show more stability. The greater electronegativity makes anion closer to the nucleus hence more stabilized. If the negative charge located atom is larger enough to hold the negative charge, then anion attains more stability.
The carbanion stability varies with the percentage of ‘s’character in its hybridization state. Since the s-orbital is closer to nucleus than p-orbital, the hybridized orbital having more‘s’ character will have more stability to accommodate anion (due to high nuclear charge). The order is .
Inductive effect in a compound will affect the anionic stability. +I groups in the compound stabilizes the negative charge of anion.
To find: the more acidic compound from each given pair of compounds.
(h)
Interpretation:
The more acidic compound from each given pair of compounds should be identified in each of the given anions.
Concept introduction:
Acidic strength in the molecule depends on the stability of the Conjugate anion.
The anion involving in resonance in a molecule will have greater stability when compared to molecules having single anion. In resonance the delocalization of anion would take place.
In a molecule where the anion is carried by a more electronegative atom will show more stability. The greater electronegativity makes anion closer to the nucleus hence more stabilized. If the negative charge located atom is larger enough to hold the negative charge, then anion attains more stability.
The carbanion stability varies with the percentage of ‘s’character in its hybridization state. Since the s-orbital is closer to nucleus than p-orbital, the hybridized orbital having more‘s’ character will have more stability to accommodate anion (due to high nuclear charge). The order is .
Inductive effect in a compound will affect the anionic stability. +I groups in the compound stabilizes the negative charge of anion.
To find: the more acidic compound from each given pair of compounds.
Trending nowThis is a popular solution!
Chapter 3 Solutions
Organic Chemistry, Third Edition Binder Ready Version
- Suppose 1.76 g of magnesium acetate (Mg (CH3CO2)2) are dissolved in 140. mL of water. Find the composition of the resulting electrolyte solution. In particular, list the chemical symbols (including any charge) of each dissolved ion in the table below. List only one ion per row. mEq Then, calculate the concentration of each ion in dwrite the concentration in the second column of each row. Be sure you round your answers to the L correct number of significant digits. ion Add Row mEq L x 5arrow_forwardA pdf file of your hand drawn, stepwise mechanisms for the reactions. For each reaction in the assignment, you must write each mechanism three times (there are 10 reactions, so 30 mechanisms). (A) do the work on a tablet and save as a pdf., it is expected to write each mechanism out and NOT copy and paste the mechanism after writing it just once. Everything should be drawn out stepwise and every bond that is formed and broken in the process of the reaction, and is expected to see all relevant lone pair electrons and curved arrows.arrow_forwardNonearrow_forward
- Nonearrow_forwardDraw the structure of the product of the reaction given the IR and MS data. Spectral analysis of the product reveals: MS: M 150, M-15, M-43 CH.COCI AICI, IR: 3150-3000 cm, 2950-2850 cm and 1700 cmarrow_forwardPart II. Identify whether the two protons in blue are homotopic, enantiopic, diasteriotopic, or heterotopic. a) HO b) Bri H HH c) d) H H H Br 0arrow_forward
- Nonearrow_forwardChoose the option that is decreasing from biggest to smallest. Group of answer choices: 100 m, 10000 mm, 100 cm, 100000 um, 10000000 nm 10000000 nm, 100000 um, 100 cm, 10000 mm, 100 m 10000000 nm, 100000 um, 10000 mm, 100 cm, 100 m 100 m, 100 cm, 10000 mm, 100000 um, 10000000 nmarrow_forwardQ1. (a) Draw equations for homolytic and heterolytic cleavages of the N-H bond in NH3. Use curved arrows to show the electron movement. (b) Draw equations for homolytic and heterolytic cleavages of the N-H bond in NH4*. Use curved arrows to show the electron movement.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY