Materials Science And Engineering Properties
1st Edition
ISBN: 9781111988609
Author: Charles Gilmore
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 3, Problem 3DRQ
To determine
The defect property of metals for the material selection and the reason for its importance in the design.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
i need quickly please please please
Which of these cast iron would allow the greatest amount of plastic deformation before fracture .
Nodular cast iron
Grey cast iron
White cast iron
None of them can be worked.
If the diameter of steel specimen stretched by tension load is doubled , then it’s tensile strength will be
Halved
Remain unaffected
Doubled
Become four times
Temperature is proportional with
Percent of elongation
Tensile strength
Modulus of elasticity
All above
The tensile strength of a steel specimen that have a 182 HB , equals to
490 MPa
910 MPa
627 MPa
Not given…
Which one of the following processes causes a dramatic increase in the hardness of a steel part?
A) quenching
B) tempering
(c) normalizing
D full annealing
Steel, Brass, and Copper rods are connected as shown in the figure. Initially, the temperature was 15 degrees Celsius and the stress on the bars is zero. Eventually, the
temperature increased to 25 degrees Celsius. Determine the total deformation on the brass.
Steel
Brass
Copper
Est = 200 GPa
12(10-)/°C apr
Ebr
Ecu
17(10-)/°C
120 GPa
100 GPa
%3D
ast
= 21(10-6)/°C acu
Acu = 515 mm?
|Ast
200 mm2
Abr = 450 mm2
300 mm
-200 mm
100 mm
O -0.0109mm
O 0.0241mm
O -0.0241mm
O 0.0109mm
oooO
Chapter 3 Solutions
Materials Science And Engineering Properties
Ch. 3 - Prob. 1CQCh. 3 - Prob. 2CQCh. 3 - Prob. 3CQCh. 3 - Prob. 4CQCh. 3 - Prob. 5CQCh. 3 - Prob. 6CQCh. 3 - Prob. 7CQCh. 3 - Prob. 8CQCh. 3 - Prob. 9CQCh. 3 - Prob. 10CQ
Ch. 3 - Prob. 11CQCh. 3 - Prob. 12CQCh. 3 - Prob. 13CQCh. 3 - Prob. 14CQCh. 3 - Prob. 15CQCh. 3 - Prob. 16CQCh. 3 - Prob. 17CQCh. 3 - Prob. 18CQCh. 3 - Prob. 19CQCh. 3 - Prob. 20CQCh. 3 - Prob. 21CQCh. 3 - Prob. 22CQCh. 3 - Prob. 23CQCh. 3 - Prob. 24CQCh. 3 - Prob. 25CQCh. 3 - Prob. 26CQCh. 3 - Prob. 27CQCh. 3 - Prob. 28CQCh. 3 - Prob. 29CQCh. 3 - Prob. 30CQCh. 3 - Prob. 31CQCh. 3 - Prob. 32CQCh. 3 - Prob. 33CQCh. 3 - Prob. 1ETSQCh. 3 - Prob. 2ETSQCh. 3 - Prob. 3ETSQCh. 3 - Prob. 4ETSQCh. 3 - Prob. 5ETSQCh. 3 - Prob. 6ETSQCh. 3 - Prob. 7ETSQCh. 3 - Prob. 1DRQCh. 3 - Prob. 2DRQCh. 3 - Prob. 3DRQCh. 3 - Prob. 3.1PCh. 3 - Prob. 3.2PCh. 3 - Prob. 3.3PCh. 3 - Prob. 3.4PCh. 3 - Prob. 3.5PCh. 3 - Prob. 3.6PCh. 3 - Prob. 3.7PCh. 3 - Prob. 3.8PCh. 3 - Prob. 3.9PCh. 3 - Prob. 3.10PCh. 3 - Prob. 3.11PCh. 3 - Prob. 3.12PCh. 3 - Prob. 3.13PCh. 3 - Prob. 3.14P
Knowledge Booster
Similar questions
- Another of the steel components manufactured by michael's company is steel railway track sections. Thecomponent has a length of 120m (at a temperature of -10°C) and is to be exposed to a temperaturerange of -10°C to 55°C. In order to calculate the gaps which need to be left between the sections michael'scustomer needs to determine the maximum length which each railway track section will expand to andmichael have been asked to carry out the calculation for them. michael have also been instructed to determinethe percentage change in volume and surface area when exposed to the same initial and finaltemperatures. The customer has informed him that the cross sectional profile of the railway track isrectangular and of breadth 14cm and height 32cm. Assume the coefficient of thermal expansion ofsteel is 12x10-6 /°C. Briefly discuss the changes that occur with in the steel as a result of the change intemperature.arrow_forwardAt a temperature of 60°F, a 0.04-in. gap exists between the ends of the two bars shown. Bar (1) is an aluminum alloy [E = 10,000 ksi; v = 0.32; a = 12.5 x 10-6/°F] bar with a width of 3.0 in. and a thickness of 0.75 in. Bar (2) is a stainless steel [E = 28,000 ksi; v = 0.12; a = 9.6 x 10-6/°F] bar with a width of 2.0 in. and a thickness of 0.75 in. The supports at A and C are rigid. Determine (a) the lowest temperature at which the two bars contact each other. (b) the normal stress in the two bars at a temperature of 250°F. (c) the normal strain in the two bars at 250°F. (d) the change in width of the aluminum bar at a temperature of 250°F. (1) 3.0 in. 32 in. 2.0 in. B ↓ (2) 44 in. 0.04-in. gap Determine the lowest temperature, Tcontact, at which the two bars contact each other.arrow_forwardThe assembly is composed of a steel shell and an aluminum core that has been welded to a rigid plate. The gap between the plate and the aluminum is initially 1- mm. If the assembly's temperature is reduced by 180°C, determine (a) the final axial stresses in each material and (b) the deflection of the rigid bar. To support your response, draw a deformation diagram with appropriate labels. Use the following properties: Aluminum core Steel shell Diameters (mm) d = 15 mm do = 30 mm d₁ = 20 mm E (GPa) 70 200 2 m a (/°C) 22 x 10-6 12 x 10-6arrow_forward
- Clearly show your workarrow_forwardAt a temperature of 60°F, a 0.04-in. gap exists between the ends of the two bars shown. Bar (1) is an aluminum alloy [E = 10,000 ksi; v = 0.32; α=α=12.5 x 10-6/°F] bar with a width of 2.5 in. and a thickness of 0.75 in. Bar (2) is a stainless steel [E = 28,000 ksi; v = 0.12; α=α=9.6 x 10-6/°F] bar with a width of 1.7 in. and a thickness of 0.75 in. The supports at A and C are rigid. Assume h1=2.5 in., h2=1.7 in., L1=31 in., L2=46 in., and Δ=Δ= 0.04 in. (A) Determine the lowest temperature, Tcontact, at which the two bars contact each other. (B) Find a geometry-of-deformation relationship for the case in which the gap is closed. Express this relationship by entering the sum δ1+δ2, where δ1 is the axial deflection of Bar (1), and δ2 is the axial deflection of Bar (2). δ1+δ2= _____in. (C) Find the force in the Bar (1), F1, and the force in Bar (2), F2, at a temperature of 225oF. By convention, a tension force is positive and a compression force is negative. IN KIPS (D) Find σ1 and σ2,…arrow_forwardThe strength of titanium is 448.16 MPa when the grain size is 17.02 μm and565.4 MPawhen the grain size is0.8μm. What average grain size (in nm) is required to achieve a strength of approximately 839 MPa?arrow_forward
- Materials, properties and testing Describe the effect bend testing have on the thermal properties of steel.arrow_forwardThe yield strength for an alloy that has an average grain diameter of 4.4 x 10-2 mm is 133 MPa. At a grain diameter of 8.3 x 10-3 mm, the yield strength increases to 243 MPa. At what grain diameter, in mm, will the yield strength be 226 MPa? d = i mmarrow_forwardAt a temperature of 60°F, a 0.02-in. gap exists between the ends of the two bars shown. Bar (1) is an aluminum alloy [E = 10,000 ksi; v = 0.32; α=α=12.5 x 10-6/°F] bar with a width of 2.8 in. and a thickness of 0.85 in. Bar (2) is a stainless steel [E = 28,000 ksi; v = 0.12; α=α=9.6 x 10-6/°F] bar with a width of 1.6 in. and a thickness of 0.85 in. The supports at A and C are rigid. Assume h1=2.8 in., h2=1.6 in., L1=26 in., L2=40 in., and Δ=Δ= 0.02 in. Determine(a) the lowest temperature at which the two bars contact each other.(b) the normal stress in the two bars at a temperature of 225°F.(c) the normal strain in the two bars at 225°F.(d) the change in width of the aluminum bar at a temperature of 225°F.arrow_forward
- A batch of casted mild steel has a modulus of elasticity of 200 GPa and a yield strength of 250 MPa. Calculate for its modulus of resilience. After cold working the steel, the yield strength increases to 310 MPa. Calculate for the percent reduction in the average grain diameter given σo = 70 MPa and k = 0.74.arrow_forwardMaterial A is known as a high strength material and Material B has high toughness. Explain the difference between properties of Materials A and B.arrow_forwardTask (3) you are asked to perform tensile test on specimens of two different materials (A and B) and you obtained the stress-strain diagram of the two specimens as shown in Figure 2: 400 350 300 250 Material A 200 150 100 50 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 Strain (mm/mm) 50 Material B 30 20 10 0.02 0.04 0.06 0.08 0.1 Strain (mm/mm) Figure 2: Tensile Test Analysis Stress (MPa) Stress (MPa)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage LearningConstruction Materials, Methods and Techniques (M...Civil EngineeringISBN:9781305086272Author:William P. Spence, Eva KultermannPublisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
Construction Materials, Methods and Techniques (M...
Civil Engineering
ISBN:9781305086272
Author:William P. Spence, Eva Kultermann
Publisher:Cengage Learning