Materials Science And Engineering Properties
1st Edition
ISBN: 9781111988609
Author: Charles Gilmore
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 3, Problem 20CQ
To determine
To fill:
The correct term in the given blank.
Introduction:
Dislocation is a kind of defect in lattice crystal. It is also known as line defects. A dislocation occurs after the insertion or deletion of an atom.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Considering a finite cylinder of single crystal
aluminum with a diameter (D) that has an
axial unit screw dislocation at the center,
what is the stress field around this
dislocation in terms of D (diameter of
cylinder) and r (radius which is the distance
from dislocation center)
The following figure displays both an Edge Dislocation and a Screw Dislocation. Answer the
following questions regarding the characteristics of each Dislocation
Edge dislocation
Screw dislocation
Narrow bars of aluminum are bonded to the two sides of a thick
steel plate as shown. Initially, at T₁ = 70°F, all stresses are zero.
Knowing that the temperature will be slowly raised to T₂ and then
reduced to T₁, determine (a) the highest temperature T₂ that does
not result in residual stresses, (b) the temperature T₂ that will
result in a residual stress in the aluminum equal to 58 ksi. Assume
aa = 12.8 x 10-6/°F for the aluminum and a = 6.5 × 10-6/°F for
the steel. Further assume that the aluminum is elastoplastic with
E = 10.9 × 106 psi and ay = 58 ksi. (Hint: Neglect the small
stresses in the plate.)
Fig. P2.121
Chapter 3 Solutions
Materials Science And Engineering Properties
Ch. 3 - Prob. 1CQCh. 3 - Prob. 2CQCh. 3 - Prob. 3CQCh. 3 - Prob. 4CQCh. 3 - Prob. 5CQCh. 3 - Prob. 6CQCh. 3 - Prob. 7CQCh. 3 - Prob. 8CQCh. 3 - Prob. 9CQCh. 3 - Prob. 10CQ
Ch. 3 - Prob. 11CQCh. 3 - Prob. 12CQCh. 3 - Prob. 13CQCh. 3 - Prob. 14CQCh. 3 - Prob. 15CQCh. 3 - Prob. 16CQCh. 3 - Prob. 17CQCh. 3 - Prob. 18CQCh. 3 - Prob. 19CQCh. 3 - Prob. 20CQCh. 3 - Prob. 21CQCh. 3 - Prob. 22CQCh. 3 - Prob. 23CQCh. 3 - Prob. 24CQCh. 3 - Prob. 25CQCh. 3 - Prob. 26CQCh. 3 - Prob. 27CQCh. 3 - Prob. 28CQCh. 3 - Prob. 29CQCh. 3 - Prob. 30CQCh. 3 - Prob. 31CQCh. 3 - Prob. 32CQCh. 3 - Prob. 33CQCh. 3 - Prob. 1ETSQCh. 3 - Prob. 2ETSQCh. 3 - Prob. 3ETSQCh. 3 - Prob. 4ETSQCh. 3 - Prob. 5ETSQCh. 3 - Prob. 6ETSQCh. 3 - Prob. 7ETSQCh. 3 - Prob. 1DRQCh. 3 - Prob. 2DRQCh. 3 - Prob. 3DRQCh. 3 - Prob. 3.1PCh. 3 - Prob. 3.2PCh. 3 - Prob. 3.3PCh. 3 - Prob. 3.4PCh. 3 - Prob. 3.5PCh. 3 - Prob. 3.6PCh. 3 - Prob. 3.7PCh. 3 - Prob. 3.8PCh. 3 - Prob. 3.9PCh. 3 - Prob. 3.10PCh. 3 - Prob. 3.11PCh. 3 - Prob. 3.12PCh. 3 - Prob. 3.13PCh. 3 - Prob. 3.14P
Knowledge Booster
Similar questions
- Q7> Ductile-to-brittle transition temperature (DBTT) is a very important parameter in the design of metallic materials for engineering applications. It has been well known that most of BCC and HCP metals show the DBT phenomenon; however, there is no DBTT in FCC metals. (a) Explain the reason in terms of deformation and fracture. You must compare the BCC and FCC. (b) The ductile fracture surface consists of many dimples. Explain their formation mechanism from the concept of point defects. (c) There are two types in the brittle fracture. Explain and Compare them.arrow_forward3.What is a dislocation? List five more microscopic defects in bulk materials. Which of the following properties are most sensitive to dislocation structures in materials? a. Young's modulus b. Yield strength c. Conductivity d. Transparencyarrow_forward6. Derive the resolved shear stress(RSS) equation for dislocation at an arbitrary plane at angle (e) with horizontal under nominal axial tensile stress(o) and plot the variation of Schmidt factor witharrow_forward
- 6)arrow_forwardA sheet of copper is stretched biaxially in the xy-plane. If the strains in the sheet are ϵx = 0.40 x10-3 and ϵy = 0.30 x10-3, determine σx and σy. Use E = 110 GPa and v = 0.35.arrow_forwardA laminated [0/90/0/90]s graphite/epoxy beam is 1 mm thick, is 20 mm wide, and has 0.125 mm thick plies. The lamina properties are E1 = 180 GPa, E2 = 10 GPa, ν12 = 0.28, G12 = 7 GPa Xt = 1700 MPa, Xc = 1400 MPa, Yt = 40 MPa, Yc = 230 MPa (a) Determine the flexural modulus of the beam (b) How could the flexural modulus be improved without changing the ply materials, the number of plies, or the ply orientations? (c) Using the Maximum Stress Criterion for each ply, determine the magnitude of the maximum allowable bending moment that the beam can withstand. Which ply fails first?arrow_forward
- An aluminum alloy [E = 67 GPa; ν = 0.33; α = 23.0 × 10–6/°C] plate is subjected to a tensile load P. The plate has a depth of d = 225 mm, a cross-sectional area of A = 5100 mm2, and a length of L = 4.1 m. The initial longitudinal normal strain in the plate is zero. After load P is applied and the temperature of the plate has been increased by ΔT = 63°C, the longitudinal normal strain in the plate is found to be 2900 με. Determine: (a) the magnitude of load P. (b) the change in plate depth Δd.arrow_forward5) For an Edge Dislocation, identify: Direction of dislocation Perpendicular to Shear Stress Parallel to Shear Stressarrow_forwardQus :arrow_forward
- Q- civil engineering.arrow_forwardIn an engineering application, the material is a strip of iron with a fixed crystallographic structure subject to a tensile load during operation. The part failed (yielded) during operation and needs to be replaced with a component with better properties. You are told that two other iron strips had failed at yield stresses of 110 and 120 MPa, with grain sizes of 30 microns and 25 microns respectively. The current strip has a grain size of 20 microns. The diameter of the rod is 1 mm and the load applied is 100 N. What is the yield stress of the new part C and would you recommend it for operation? Select one: Oa. 133.5 MPa, yes O b. OC. Od Oe. 120.5 MPa, no 129.5, yes 140.5, no 123.5 MPa, yesarrow_forward-6 The aluminum shell is fully bonded to the brass core and the assembly is unstressed at a temperature of 16°C. It is known thatE = 105 GPa and a = 20.9 × 10 °C for the brass core and E = 71 GPa and a = 23.8 × 10¯6°C for the aluminum shell. Considering only axial deformations, determine the stress in the aluminum when the temperature reaches 185°C. 25 mm σα MPa -63 mmarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning