Atkins' Physical Chemistry
Atkins' Physical Chemistry
11th Edition
ISBN: 9780198769866
Author: ATKINS, P. W. (peter William), De Paula, Julio, Keeler, JAMES
Publisher: Oxford University Press
bartleby

Videos

Question
Book Icon
Chapter 3, Problem 3A.1ST
Interpretation Introduction

Interpretation: The change in entropy when the pressure of a fixed amount of perfect gas is changed isothermally from pi to pf has to be calculated.  The origin of this change has to be stated.

Concept introduction: The degree of disorder or randomness is measured in term of entropy. According to thermodynamic definition, entropy is defined as the ratio of thermal energy to absolute temperature.

Expert Solution & Answer
Check Mark

Answer to Problem 3A.1ST

The change in entropy when the pressure of a fixed amount of perfect gas for nmole is changed isothermally from pi to pf is calculated as,

  ΔS=nRlnPiPf

Explanation of Solution

The thermodynamic definition of entropy is expressed by formula,

  dS=dqrevT                                                                                                    (1)

Where,

  • dS is the entropy change.
  • dqrev is the energy transfer at absolute temperature T.

Rearrange the above equation (1).

  dqrev=TdS

From the first law of thermodynamics,

  dU=dqdW                                                                                             (2)

Where,

  • dU is the change in internal energy at constant volume.
  • dW is the work done.
  • • The change in internal energy at constant volume is expressed by the formula,

    dU=CVdT (3)

The work done is expressed as,

  dW=Pdv (4)

Substitute the values of dqrev, dU and dW in equation (2).

  dU=dqdWdq=dU+dWTdS=CvdT+Pdv

Here the process is isothermal.  It means that the temperature is constant.  Therefore, at constant temperature, dT=0 and the term, CVdT=0.

Substitute, CVdT=0 in the above equation.

  TdS=CvdT+PdvTdS=0+PdvTdS=PdvdS=PdvT

Simplify the above equation.

  T=PdvdS

From the ideal gas equation,

  PV=nRTT=PVnR

Substitute the value of T in the above expression.

  T=PVnRPdvdS=PVnRdS=nRdvV

Integrate the above derivative between two states, initial and final, i and f respectively.

  sisfdS=vivfnRdvVsisfdS=nRvivfdvVsfsi=nRln(VfVi)ΔS=nRln(VfVi)

From ideal gas equation,

  PV=nRT

At constant temperature,

PV will also be constant.  Therefore, it can be also written as,

  PiVi=PfVfPiPf=VfVi

Replace VfVi by PiPf in the above expression.

  ΔS=nRln(PiPf)

Hence, the entropy change when the pressure of a fixed amount of perfect gas is changed isothermally from pi to pf is shown by the expression,

  ΔS=nRln(PiPf)

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
1.57 Draw all reasonable resonance structures for the following cation. Then draw the resonance hybrid.
For the two questions below, draw the mechanism and form the major product.
Indicate similarities and differences between natural, exchanged and pillared clays.

Chapter 3 Solutions

Atkins' Physical Chemistry

Ch. 3 - Prob. 3A.1AECh. 3 - Prob. 3A.1BECh. 3 - Prob. 3A.2AECh. 3 - Prob. 3A.2BECh. 3 - Prob. 3A.3AECh. 3 - Prob. 3A.3BECh. 3 - Prob. 3A.4AECh. 3 - Prob. 3A.4BECh. 3 - Prob. 3A.5AECh. 3 - Prob. 3A.5BECh. 3 - Prob. 3A.6AECh. 3 - Prob. 3A.6BECh. 3 - Prob. 3A.1PCh. 3 - Prob. 3A.2PCh. 3 - Prob. 3A.3PCh. 3 - Prob. 3A.4PCh. 3 - Prob. 3A.5PCh. 3 - Prob. 3A.6PCh. 3 - Prob. 3A.7PCh. 3 - Prob. 3B.1DQCh. 3 - Prob. 3B.1AECh. 3 - Prob. 3B.1BECh. 3 - Prob. 3B.2AECh. 3 - Prob. 3B.2BECh. 3 - Prob. 3B.3AECh. 3 - Prob. 3B.3BECh. 3 - Prob. 3B.4AECh. 3 - Prob. 3B.4BECh. 3 - Prob. 3B.5AECh. 3 - Prob. 3B.5BECh. 3 - Prob. 3B.6AECh. 3 - Prob. 3B.6BECh. 3 - Prob. 3B.7AECh. 3 - Prob. 3B.7BECh. 3 - Prob. 3B.1PCh. 3 - Prob. 3B.2PCh. 3 - Prob. 3B.3PCh. 3 - Prob. 3B.4PCh. 3 - Prob. 3B.5PCh. 3 - Prob. 3B.6PCh. 3 - Prob. 3B.7PCh. 3 - Prob. 3B.8PCh. 3 - Prob. 3B.9PCh. 3 - Prob. 3B.10PCh. 3 - Prob. 3B.12PCh. 3 - Prob. 3C.1DQCh. 3 - Prob. 3C.1AECh. 3 - Prob. 3C.1BECh. 3 - Prob. 3C.2AECh. 3 - Prob. 3C.2BECh. 3 - Prob. 3C.3AECh. 3 - Prob. 3C.3BECh. 3 - Prob. 3C.1PCh. 3 - Prob. 3C.2PCh. 3 - Prob. 3C.4PCh. 3 - Prob. 3C.5PCh. 3 - Prob. 3C.6PCh. 3 - Prob. 3C.7PCh. 3 - Prob. 3C.8PCh. 3 - Prob. 3C.9PCh. 3 - Prob. 3C.10PCh. 3 - Prob. 3D.1DQCh. 3 - Prob. 3D.2DQCh. 3 - Prob. 3D.1AECh. 3 - Prob. 3D.1BECh. 3 - Prob. 3D.2AECh. 3 - Prob. 3D.2BECh. 3 - Prob. 3D.3AECh. 3 - Prob. 3D.3BECh. 3 - Prob. 3D.4AECh. 3 - Prob. 3D.4BECh. 3 - Prob. 3D.5AECh. 3 - Prob. 3D.5BECh. 3 - Prob. 3D.1PCh. 3 - Prob. 3D.2PCh. 3 - Prob. 3D.3PCh. 3 - Prob. 3D.4PCh. 3 - Prob. 3D.5PCh. 3 - Prob. 3D.6PCh. 3 - Prob. 3E.1DQCh. 3 - Prob. 3E.2DQCh. 3 - Prob. 3E.1AECh. 3 - Prob. 3E.1BECh. 3 - Prob. 3E.2AECh. 3 - Prob. 3E.2BECh. 3 - Prob. 3E.3AECh. 3 - Prob. 3E.3BECh. 3 - Prob. 3E.4AECh. 3 - Prob. 3E.4BECh. 3 - Prob. 3E.5AECh. 3 - Prob. 3E.5BECh. 3 - Prob. 3E.6AECh. 3 - Prob. 3E.6BECh. 3 - Prob. 3E.1PCh. 3 - Prob. 3E.2PCh. 3 - Prob. 3E.3PCh. 3 - Prob. 3E.4PCh. 3 - Prob. 3E.5PCh. 3 - Prob. 3E.6PCh. 3 - Prob. 3E.8PCh. 3 - Prob. 3.1IACh. 3 - Prob. 3.2IA
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY