Fundamentals of Aerodynamics
6th Edition
ISBN: 9781259129919
Author: John D. Anderson Jr.
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 3.8P
Consider a uniform flow with velocity
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Does the velocity potential exist for two dimensional incompressible flow prescribed by
u = x-4y; v = -(y+4x)?
If so determine its form (@) as well as that of stream function (u).
. Find the stream function associated with the two-dimensional incompressible,
possible flow with velocity components given by
a2
cos 0 and u, = -b 1+
--(1+)sino
a2
b1
r2
r2
Where a, and b are known constants.
. The stream function for a two-dimensional incompressible flow is
ax2
ay2
-+ bxy
2
2
Where a, and b are known constants. Find the velocity potential for the flow.
Chapter 3 Solutions
Fundamentals of Aerodynamics
Ch. 3 - For an irrotational flow. show that Bernoullis...Ch. 3 - Consider a venturi with a throat-to-inlet area...Ch. 3 - Consider a venturi with a small hole drilled in...Ch. 3 - Consider a low-speed open-circuit subsonic wind...Ch. 3 - Assume that a Pitot tube is inserted into the...Ch. 3 - A Pilot tube on an airplane flying at standard sea...Ch. 3 - At a given point on the surface of the wing of the...Ch. 3 - Consider a uniform flow with velocity V. Show that...Ch. 3 - Show that a source flow is a physically possible...Ch. 3 - Prove that the velocity potential and the stream...
Ch. 3 - Prove that the velocity potential and the stream...Ch. 3 - Consider the flow over a semi-infinite body as...Ch. 3 - Derive Equation (3.81). Hint: Make use of the...Ch. 3 - Derive the velocity potential for a doublet; that...Ch. 3 - Consider the nonlifting flow over a circular...Ch. 3 - Consider the nonlifting flow over a circular...Ch. 3 - Consider the lifting flow over a circular cylinder...Ch. 3 - The lift on a spinning circular cylinder in a...Ch. 3 - A typical World War I biplane fighter (such as the...Ch. 3 - The Kutta-Joukowski theorem, Equation (3.140), was...Ch. 3 - Consider the streamlines over a circular cylinder...Ch. 3 - Consider the flow field over a circular cylinder...Ch. 3 - Prove that the flow field specified in Example 2.1...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Consider a flow field represented by the stream function ψ = (4+9) x3y - (6+9) x2y2 + (4+9) xy3. Is this a possible two-dimensional incompressible flow? Is the flow irrotational? Discuss the reasons against your findings.arrow_forwardconsider the 2 dimensional velocity field V= -Ayi +Axj where in this flow field does the speed equal to A? Where does the speed equal to 2A?arrow_forwardThe stream function of a flow field is y = Ax3 – Bxy², where A = 1 m1s1 and B = 3 m-1s1. (a) Derive the velocity vector (b) Prove that the flow is irrotational (c) Derive the velocity potentialarrow_forward
- please answer quicklyarrow_forwardIf the vorticity in a region of the flow is zero, the flow is (a) Motionless (b) Incompressible (c) Compressible (d ) Irrotational (e) Rotationalarrow_forwardConsider steady, incompressible, laminar flow of a Newtonian fluid in the narrow gap between two infinite parallel plates. The top plate is moving at speed V, and the bottom plate is stationary. The distance between these two plates is h, and gravity acts in the negative z-direction (into the page in Fig. There is no applied pressure other than hydrostatic pressure due to gravity. This flow is called Couette flow. Calculate the velocity and pressure fields, and estimate the shear force per unit area acting on the bottom plate.arrow_forward
- Nonearrow_forwardConsider a flow field represented by the stream functionψ=(4+1) x3y - (6+1) x2y2 + (4+1)xy3. Is this a possible two-dimensionalincompressible flow? Is the flow irrotational?Discuss the reasons against your findings.arrow_forwardConsider a flow field represented by the stream function ψ=24 x3y - 26 x2y2 + 24 xy3. Is this a possible two-dimensional incompressible flow? Is the flow irrotational?Discuss the reasons against your findings.arrow_forward
- Consider the steady, two-dimensional velocity field given by V = (1.3 + 2.8x)i+ (1.5 – 2.8y)j. 6. Verify that this flow field is incompressible.arrow_forwardConsider a two-dimensional flow which varies in time and is defined by the velocity field, u = 1 and v = 2yt. Is the flow field incompressible at all 9mes?arrow_forwardQ1:- (a) Show that stream function exists as a consequence ofequation of continuity.(b) Show that potential function exists as a consequence ofirrotational flowarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Introduction to Kinematics; Author: LearnChemE;https://www.youtube.com/watch?v=bV0XPz-mg2s;License: Standard youtube license