Fundamentals of Aerodynamics
6th Edition
ISBN: 9781259129919
Author: John D. Anderson Jr.
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3, Problem 3.18P
The lift on a spinning circular cylinder in a freestream with a velocity of 30 m/s and at standard sea level conditions is 6 N/m of span. Calculate the circulation around the cylinder.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An airfoil generates a 1200 N/m sectional lift when traveling at 75 m/s at sea level. What is the circulation generated by this airfoil?
Flow straighteners consist of arrays of narrow ducts placed in a flow to remove swirl and other transverse
(secondary) velocities. One element can be idealised as a square box with thin sides as shown below.
Calculate the pressure drop across a box with L=22 cm and a= 2.7 cm, if air with free-stream velocity of
Uo = 11 m/s flows though the straightener. Use laminar flat-plate theory and take u = 1.85 x 10-5 Pa.s
and p = 1.177kg/m³ .
%3D
%3D
a
Uo
Figure 1: Flow across straighteners.
Draw the diagram of the dimensionless velocity
profile and 11 for the boundary layer on the surface under
the pressure gradient and discuss the diagrams by fully
mentioning the parameters
Chapter 3 Solutions
Fundamentals of Aerodynamics
Ch. 3 - For an irrotational flow. show that Bernoullis...Ch. 3 - Consider a venturi with a throat-to-inlet area...Ch. 3 - Consider a venturi with a small hole drilled in...Ch. 3 - Consider a low-speed open-circuit subsonic wind...Ch. 3 - Assume that a Pitot tube is inserted into the...Ch. 3 - A Pilot tube on an airplane flying at standard sea...Ch. 3 - At a given point on the surface of the wing of the...Ch. 3 - Consider a uniform flow with velocity V. Show that...Ch. 3 - Show that a source flow is a physically possible...Ch. 3 - Prove that the velocity potential and the stream...
Ch. 3 - Prove that the velocity potential and the stream...Ch. 3 - Consider the flow over a semi-infinite body as...Ch. 3 - Derive Equation (3.81). Hint: Make use of the...Ch. 3 - Derive the velocity potential for a doublet; that...Ch. 3 - Consider the nonlifting flow over a circular...Ch. 3 - Consider the nonlifting flow over a circular...Ch. 3 - Consider the lifting flow over a circular cylinder...Ch. 3 - The lift on a spinning circular cylinder in a...Ch. 3 - A typical World War I biplane fighter (such as the...Ch. 3 - The Kutta-Joukowski theorem, Equation (3.140), was...Ch. 3 - Consider the streamlines over a circular cylinder...Ch. 3 - Consider the flow field over a circular cylinder...Ch. 3 - Prove that the flow field specified in Example 2.1...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Derive a general expression to find circulation and the lift force for NACA 27014arrow_forwardAssume an inviscid, incompressible flow. Also, standard sea level density and pressure are 1.23 kg/m3 (0.002377 slug/ft3) and 1.01 × 105 N/m2 (2116 lb/ft2), respectively. The lift on a spinning circular cylinder in a freestream with a velocity of30 m/s and at standard sea level conditions is 6 N/m of span. Calculate thecirculation around the cylinder.arrow_forwardConsider the lifting flow over a circular cylinder of a given radius (R) and with a given circulation (r). If Ve is tripled (increased by 3 times), while the circulation stays the same, does the shape of the streamlines change? Explain.arrow_forward
- A vertical air stream flowing at a velocity of 100 m/s supports a ball of 60 mm in diameter. Taking the density of air as 1.2 kg/m³ and kinematic viscosity as 1.6 stokes, the weight of the ball that is supported is (if coefficient of drag C= 0.8)arrow_forwardB2 is flying at an altitude of 43,000 ft and a speed of 400 KTAS under standard atmospheric conditions. If the average aerodynamic chord is 39,6 ft, calculate the Reynolds number and the average % aerodynamic chord present on the wingarrow_forwardA marine vehicle tows a hollow cylinder of 760 mm diameter and 5.5 m length. The cylinder is fully submerged in seawater with its axis aligned to the flow direction. Estimate the allocated power the marine vehicle needs to drag this cylinder at a speed of 6 knots and also calculate the thickness of the boundary layer at the trailing edge.arrow_forward
- A cylindrical tank of radius rrim = 0.354 m rotates about its vertical axis. The tank is partially filled with oil. The speed of the rim is 3.61 m/s in the counterclockwise direction (looking from the top), and the tank has been spinning long enough to be in solid-body rotation. For any fluid particle in the tank, calculate the magnitude of the component of vorticity in the vertical z-directionarrow_forwardA two-dimensional diverging duct is being designed to diffuse the high-speed air exiting a wind tunnel. The x-axis is the centerline of the duct (it is symmetric about the x-axis), and the top and bottom walls are to be curved in such a way that the axial wind speed u decreases approximately linearly from u1 = 300 m/s at section 1 to u2 = 100 m/s at section 2 . Meanwhile, the air density ? is to increase approximately linearly from ?1 = 0.85 kg/m3 at section 1 to ?2 = 1.2 kg/m3 at section 2. The diverging duct is 2.0 m long and is 1.60 m high at section 1 (only the upper half is sketched in Fig. P9–36; the halfheight at section 1 is 0.80 m). (a) Predict the y-component of velocity, ?(x, y), in the duct. (b) Plot the approximate shape of the duct, ignoring friction on the walls. (c) What should be the half-height of the duct at section 2?arrow_forwardsolve thisarrow_forward
- 1arrow_forwardgive an example of a dynamic fluid force. describe the situation/movement where the dynamic fluid force is present, classify it as a drag or lift force, point out if the goal of the movement is to maximize or minimize the drag force and how that is accomplished practically. Finally point out the specific component of the equation that is altered during this situation.arrow_forwardA long circular cylinder rotates at a constant angular velocity of 100 rad/s while subjected to a uniform cross flow of air at a velocity of 15 m/s as shown. If the density of the air is 1.20 kg/m², find the lift per unit length of cylinder. y U= 15 m/s @ = 100 rad/s R = 0.25 m airarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License