(a)
The section for loads given loads using load and resistance factor design (LRFD) method.
Answer to Problem 3.8.1P
The section for loads given loads using load and resistance factor design (LRFD) method is
Explanation of Solution
Given data:
Length of the connection is
Spacing of truss in the roof system is
Snow load is
Weight of roofing is
Section for the purlins is
Weight of the truss is
Calculation:
Calculate the snow load.
Calculate the load due to purlins.
Calculate the weight of the truss.
Calculate the slant height of the roof.
Calculate the weight of the roof.
Write the expression to calculate the total dead load.
Here, total dead load is
Substitute
Calculate the factored load using following load combination.
Here, factored load is
Substitute
Write the expression to calculate the exterior joint load.
Here, load on the exterior joint is
Substitute
Consider the free body diagram of the truss shown below.
Figure-(1)
Write the expression to calculate the moment about point
Substitute
Solve further.
Consider joint
Write the expression for summation of forces acting in the horizontal direction.
Here, summation of all horizontal forces is
Substitute
Write the expression to calculate the required area.
Here, gross area is
Substitute
Write the expression to calculate the required area.
Here, effective area is
Substitute
Calculate the effective length of the truss.
Calculate the radius of gyration.
Substitute
Use section
Write the expression to calculate reduction factor.
Here, reduction factor is
Substitute
Write the expression to calculate the effective area for the section.
Substitute
Conclusion:
Since the gross area, net area and radius of gyration for this greater than the calculated value,
(b)
The section for loads given loads using allowable strength design (ASD) method.
Answer to Problem 3.8.1P
The section for loads given loads using allowable strength design (ASD) method is
Explanation of Solution
Given data:
Length of the connection is
Spacing of truss in the roof system is
Snow load is
Weight of roofing is
Section for the purlins is
Weight of the truss is
Calculation:
Calculate the ultimate load using the following load combination.
Here, ultimate load is
Substitute
Write the expression to calculate the exterior joint load.
Here, load on the exterior joint is
Substitute
Consider the free body of the truss as shown below.
Figure-(2)
Write the expression to calculate the moment about point
Substitute
Solve further.
Consider joint
Write the expression for summation of forces acting in the horizontal direction.
Here, summation of all horizontal forces is
Substitute
Write the expression to calculate the required area.
Here, gross area is
Substitute
Write the expression to calculate the required area.
Here, effective area is
Substitute
Calculate the effective length of the truss.
Calculate the radius of gyration.
Substitute
Use section
Write the expression to calculate reduction factor.
Here, reduction factor is
Substitute
Write the expression to calculate the effective area for the section.
Substitute
Conclusion:
Since the gross area, net area and radius of gyration for this greater than the calculated value,
Want to see more full solutions like this?
Chapter 3 Solutions
Bundle: Steel Design, Loose-leaf Version, 6th + Mindtap Engineering, 1 Term (6 Months) Printed Access Card
- : A 5ms- long current pulse is desired for two linear lamps connected in series and pumped at a total energy input of (1KJ). Each of lamps has an arc-length of (10cm) and a bore of (1cm). If we assume a peak current of (i, -650A). Design a multiple mesh network including number of LC sections, inductance and capacitance per section and capacitor voltage. Laser designarrow_forwardWhat would be the best way to handle when a contractor misses a concrete pour deadline which causes delays for other contractors?arrow_forwardPlease solve manuallyarrow_forward
- . The free fall distance was 1753 mm. The times for the release and catch recorded on the fall experiments were in millisecond: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Calculate the time taken for the fall for each experiment. Calculate for each fall the acceleration based on time and distance. Calculate the mean of the accelerations. Give in the answer window the calculated mean of accelerations in m/s2.arrow_forwardneed help. explain plzarrow_forward-Design the traffic signal intersection using all red 2 second, for all phase the truck percent 5% for all movement, and PHF -0.95 Check for capacity only Approach Through volume Right volume Left volume Lane width Number of lane Veh/hr Veh/hr Veh/hr m North 700 100 150 3.0 3 south 600 75 160 3.0 3 East 300 80 50 4.0 R west 400 50 55 4.0 2arrow_forward
- need helparrow_forwardFor the beam show below, draw A.F.D, S.F.D, B.M.D A 2 N M 10 kN.m B 2 M Carrow_forwardB: Find the numerical solution for the 2D equation below and calculate the temperature values for each grid point shown in Fig. 2 (show all steps). (Do only one trail using following initial values and show the final matrix) T₂ 0 T3 0 I need a real solution, not artificial intelligence locarrow_forward
- : +0 العنوان use only Two rods fins) having same dimensions, one made orass (k = 85 Wm K) and the mer of copper (k = 375 W/m K), having of their ends inserted into a furna. At a section 10.5 cm a way from furnace, the temperature of brass rod 120 Find the distance at which the ame temperature would be reached in the per rod ? both ends are ex osed to the same environment. ns 2.05 ۲/۱ ostrararrow_forwardI need a real solution, not artificial intelligencearrow_forwardI need detailed help solving this exercise from homework of Applied Mechanics. I do not really understand how to do, please do it step by step, not that long but clear. Thank you!arrow_forward
- Steel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage Learning